Open data types and open functions

Andres Loh and Ralf Hinze

July 11, 2006

This talk

@ Add open data types and open functions to Haskell.
@ Keep it as simple as possible!

@ Many of the design decisions (and restrictions) are inspired by
Haskell's type classes.

Andres Loéh and Ralf Hinze Open data types and open functions 2

0 The language extension
@ Data types
@ Functions
@ Pattern matching

© Applications
@ Expression problem

@ Generic programming
@ Exceptions

© Implementation
@ Directly
@ Separate compilation

@ Conclusions

Andres L6éh and Ralf Hinze Open data types and open functions 3

Data types in Haskell

data Expr =
Num Int
| Sum Expr Expr
| Prod Expr Expr
| Neg Expr

@ Each data type comprises a number of constructors.

@ Each constructor can have arguments.

@ All constructors have to be declared at once, while declaring the data
type.

Andres L6éh and Ralf Hinze Open data types and open functions 4

Data types in Haskell — continued

Generalized algebraic data types in Haskell use the following syntax:

data Expr where
Num :: Int — Expr
Sum :: Expr — Expr — Expr
Prod :: Expr — Expr — Expr
Neg :: Expr — Expr

@ Equivalent to the declaration on the previous slide.

@ The signature of the data type is given.

@ Each constructor is accompanied by its type signature.

Andres L6éh and Ralf Hinze Open data types and open functions 5

Syntax: open data types

| open data Expr :: x

@ This declares a new open data type of the given kind. No
constructors need to be given at the point of declaration, but can
instead appear anywhere in the program (where Expr is in scope).

Andres L6éh and Ralf Hinze Open data types and open functions 6

Syntax: open data types

| open data Expr :: x

@ This declares a new open data type of the given kind. No
constructors need to be given at the point of declaration, but can
instead appear anywhere in the program (where Expr is in scope).

Num :: Int — Expr

Andres L6éh and Ralf Hinze Open data types and open functions 6

Syntax: open data types

| open data Expr :: x

@ This declares a new open data type of the given kind. No
constructors need to be given at the point of declaration, but can
instead appear anywhere in the program (where Expr is in scope).

| Num :: Int — Expr

| Sum :: Expr — Expr — Expr

Andres L6éh and Ralf Hinze Open data types and open functions 6

Syntax: open data types

| open data Expr :: x

@ This declares a new open data type of the given kind. No
constructors need to be given at the point of declaration, but can
instead appear anywhere in the program (where Expr is in scope).

| Num :: Int — Expr Prod :: Expr — Expr — Expr

| Sum :: Expr — Expr — Expr

Andres L6éh and Ralf Hinze Open data types and open functions 6

Syntax: open data types

| open data Expr :: x

@ This declares a new open data type of the given kind. No
constructors need to be given at the point of declaration, but can
instead appear anywhere in the program (where Expr is in scope).

| Num :: Int — Expr | Prod :: Expr — Expr — Expr

| Sum :: Expr — Expr — Expr | Neg :: Expr — Expr

Andres Loéh and Ralf Hinze Open data types and open functions 6

Syntax: open data types

| open data Expr :: x

@ This declares a new open data type of the given kind. No
constructors need to be given at the point of declaration, but can
instead appear anywhere in the program (where Expr is in scope).

| Num :: Int — Expr | Prod :: Expr — Expr — Expr

| Sum :: Expr — Expr — Expr | Neg :: Expr — Expr

@ The result type indicates the data type the constructor belongs to.

@ The program behaves as if the data type had been defined closed, in
a single place.

@ We can now grow the expression language in multiple steps.

@ Once we have open data types, we need open functions, too ...

Andres L6éh and Ralf Hinze Open data types and open functions 6

Open functions

open data Expr :: % eval :: Expr — Int
Num :: Int — Expr eval (Numn) =n
Sum :: Expr — Expr — Expr eval (Sum e; ey) = eval e; + eval e

Andres Loéh and Ralf Hinze Open data types and open functions 7

Open functions

open data Expr :: % eval :: Expr — Int
Num :: Int — Expr eval (Numn) =n
Sum :: Expr — Expr — Expr eval (Sum e; ey) = eval e; + eval e

If we now extend Expr, we have to extend eval as well:

| Prod :: Expr — Expr — Expr

Andres Loéh and Ralf Hinze Open data types and open functions 7

Open functions

open data Expr :: open eval :: Expr — Int
Num :: Int — Expr eval (Numn) =n
Sum :: Expr — Expr — Expr eval (Sum e; ey) = eval e; + eval e

If we now extend Expr, we have to extend eval as well:

| Prod :: Expr — Expr — Expr

| eval (Prod e; ep) = eval ej x eval e

Andres L6éh and Ralf Hinze Open data types and open functions 7

Open functions

open data Expr :: open eval :: Expr — Int
Num :: Int — Expr eval (Numn) =n
Sum :: Expr — Expr — Expr eval (Sum e; ey) = eval e; + eval e

If we now extend Expr, we have to extend eval as well:

| Prod :: Expr — Expr — Expr

| eval (Prod e; ep) = eval ej x eval e

@ The open keyword declares a function to be open.
@ New equations can be given at any point in the program.
@ The program behaves as if the function had been defined closed, in a

single place (in particular, recursive calls always referr to the full
function).

@ What about pattern matching?

Andres L6éh and Ralf Hinze Open data types and open functions 7

Pattern matching

The function eval is very nice so far, because it has non-overlapping
patterns. What what if we extend a function that has overlapping
patterns?

open simplify :: Expr — Expr

simplify (Sum (Num 0) ez) = simplify e,

simplify e =e

Andres Léh and Ralf Hinze Open data types and open functions 8

Pattern matching

The function eval is very nice so far, because it has non-overlapping
patterns. What what if we extend a function that has overlapping
patterns?

open simplify :: Expr — Expr

simplify (Sum (Num 0) ez) = simplify e,

simplify e =e

@ in Haskell, the order of function equations is significant

@ this is not suitable for open functions

Andres L6éh and Ralf Hinze Open data types and open functions 8

Best-fit pattern matching

inspired by Haskell's resolution of overlapping instances

a variable pattern is a worse fit than a constructor pattern
use the best fit (not the first)

for multiple patterns, use a left-to-right bias

order of equations is no longer significant

default equations (such as for simplify can be added early)

Andres L6éh and Ralf Hinze Open data types and open functions 9

Example of best-fit pattern matching

The equations of a function can always be reordered such that first-fit and
best-fit pattern matching semantics coincide:

f :: [Int] — Either Int Char — ...

f (x:xs) (Left 1)
fy (Right a)

f (0:xs) (Right *X?)
F(1:0]) 2

£(0:[)) 2

f[] z

f(0:[]) (Left b)

f (0:[]) (Left 2)

fy z

f(x: () 2

Andres L6éh and Ralf Hinze Open data types and open functions 10

Example of best-fit pattern matching

The equations of a function can always be reordered such that first-fit and
best-fit pattern matching semantics coincide:

f (x:xs) (Left 1)

fy Right a)
f (0:xs) (Right *X?)
F(1:(])

(
(
F0:1]) 2
f[] z
f(0:[]) (Leftb)
f(0:[]) (Left2)
fy z

f(x:]) 2

Andres Loh and Ralf Hinze

f :: [Int] — Either Int Char — ...

f :: [Int] — Either Int Char — ...

f

f(0:
f(0:
f(0:
f(0:
f(l:
f(x:
f(x:

fy
fy

Right a)

Open data types and open functions

10

@ Open data types and open functions are tagged with the open
keyword, but otherwise the syntax is almost the same as for normal
declarations.

@ Type signatures for open functions are required, and only top-level
functions can be open.

@ The meaning of programs containing open data types and open
functions is simple, as if all the open entities had been declared
closed, in one place.

@ There is no way to address different “versions” of a data type or a
function.

@ Open entities can be exported or hidden via the module system, but
only as a whole.

Andres L6éh and Ralf Hinze Open data types and open functions 11

Overview

© Applications
@ Expression problem
@ Generic programming
@ Exceptions

Andres L6éh and Ralf Hinze Open data types and open functions 12

Expression problem

As we have seen as a running example, we can apply open data types to
solve the expression problem.

We can add new sorts of data by declaring a new constructor.
We can add new operations by defining a new function.

We can extend existing functions to new sorts of data by providing
additional equations.

There is no need to change existing code.

The solution is as type-safe as Haskell is. Usually, pattern match
failures occur at runtime, but patterns can be checked for
exhaustiveness at compile time (resulting in a warning).

We will consider separate compilation when we discuss the
implementation.

Andres L6éh and Ralf Hinze Open data types and open functions 13

Lightweight generic programming

Defining operations that are parameterized by a type argument and can
access the structure of data types:

@ structural equality

@ pretty printing and parsing

@ traversals and queries
Lightweight generic programming:

@ within the language (as opposed to having a special-purpose
extension)

@ type reflection via type classes or representation types

@ generic functions are type class members or functions that match on
a type representation

Andres L6éh and Ralf Hinze Open data types and open functions 14

A type of type representations

open data Type :: x — x

Int :: Type Int

Char :: Type Char

Unit :: Type ()

Pair :: Type a — Type b — Type (a,b)
Either :: Type a — Type b — Type (Either a b)
List :: Type a — Type [a]

Andres Loéh and Ralf Hinze Open data types and open functions 15

A type of type representations

open data Type :: x — x

Int :: Type Int

Char :: Type Char

Unit :: Type ()

Pair :: Type a — Type b — Type (a,b)
Either :: Type a — Type b — Type (Either a b)
List :: Type a — Type [a]

@ The type () is Haskell's “unit”-type with only one element, the type
Either represents binary choice in Haskell, and [] is the built-in data
type of homogeneous lists.

Andres Loéh and Ralf Hinze Open data types and open functions 15

A type of type representations

open data Type :: x — x

Int :: Type Int

Char :: Type Char

Unit :: Type ()

Pair :: Type a — Type b — Type (a,b)
Either :: Type a — Type b — Type (Either a b)
List :: Type a — Type [a]

@ The type () is Haskell's “unit”-type with only one element, the type
Either represents binary choice in Haskell, and [] is the built-in data
type of homogeneous lists.

o Note: The data type Type is a generalized algebraic data type.

@ A value of type Type a is a representation of type a.

Andres L6éh and Ralf Hinze Open data types and open functions 15

An overloaded equality function

openeq :: Typea —a — a — Bool

eq Int X y =x==y -- use built-in equality
eq Char X y =x==y -- use built-in equality
eq Unit O) = True

(
eq (Pairab) (x1,x2) (y1,¥2) =eqaxiyiAegbxays
eq (Either ab) (Left x) (Lefty) =eqaxy
eq (Either a b) (Right x) (Righty) =eqbxy
eq (Either a b) _ _ = False
eq (List a) XS ys = and (zipWith (eq a) xs ys)

Andres L6éh and Ralf Hinze Open data types and open functions 16

An overloaded equality function

openeq :: Typea —a — a — Bool

eq Int X y =x==y -- use built-in equality
eq Char X y =x==y -- use built-in equality
eq Unit O) = True

(
eq (Pairab) (x1,x2) (y1,¥2) =eqaxiyiAegbxays
eq (Either ab) (Left x) (Lefty) =eqaxy
eq (Either a b) (Right x) (Righty) =eqbxy
eq (Either a b) _ _ = False
eq (List a) XS ys and (zipWith (eq a) xs ys)

Let us turn this function into a generic function:

eq a x y = case view a of View a’ from to — eq a’ (from x) (from y)

data View :: * — x where
View :: Typea’ — (a — a’) — (a’ — a) — View a

Andres L6éh and Ralf Hinze Open data types and open functions 16

Generic equality — continued

open eq :: Typea — a — a — Bool

eq Int X y =x==y -- use built-in equality
eq Char X y =x==y - use built-in equality
eq Unit 0O) = True

eq (Either a b) (Left x) (Lefty) =eqaxy

eq (Either a b) (Right x) (Righty) =eqbxy

eq (Either a b) _ _ = False

eq (List a) XS ys = and (zipWith (eq a) xs ys)

eq a x y = case view a of View a’ from to — eq a’ (from x) (from y)

(

eq (Pairab) (xi,x2) (y1,y2) =egqaxiyiAeqbxays
(
(

Andres Loéh and Ralf Hinze Open data types and open functions 17

Generic equality — continued

open eq :: Typea — a — a — Bool

eq Int X y =x==y -- use built-in equality
eq Char X y =x==y - use built-in equality
eq Unit 0O) = True

eq (Either a b) (Left x) (Lefty) =eqaxy

eq (Either a b) (Right x) (Righty) =eqbxy

eq (Either a b) _ _ = False

eq (List a) XS ys = and (zipWith (eq a) xs ys)

eq a x y = case view a of View a’ from to — eq a’ (from x) (from y)

(

eq (Pairab) (xi,x2) (y1,y2) =egqaxiyiAeqbxays
(
(

@ Using view, other data types can be mapped to (nearly) isomorphic
types built from Unit, Pair and Either.

@ The case for List is then subsumed by the generic case.

@ For each new data type, the representation type Type must be
extended, but usually not the generic functions.

Andres L6éh and Ralf Hinze Open data types and open functions 17

An interface for exceptions

throw :: Exception — a
catch :: 10 a — (Exception — 10 a) — 10 a

Andres L6éh and Ralf Hinze Open data types and open functions 18

An interface for exceptions

throw :: Exception — a
catch :: 10 a — (Exception — 10 a) — 10 a

@ In Haskell, the type Exception is a library type with several predefined
constructors for frequent errors.

e If an application-specific error arises (for example: an illegal key is
passed to a finite map lookup), we must try to find a close match
among the predefined constructors.

@ OCaml has a special construct for extensible exceptions, and
extensible exceptions have been proposed multiple times for Haskell,
too.

Andres L6éh and Ralf Hinze Open data types and open functions 18

An interface for exceptions

throw :: Exception — a
catch :: 10 a — (Exception — 10 a) — 10 a

@ In Haskell, the type Exception is a library type with several predefined
constructors for frequent errors.

e If an application-specific error arises (for example: an illegal key is
passed to a finite map lookup), we must try to find a close match
among the predefined constructors.

@ OCaml has a special construct for extensible exceptions, and
extensible exceptions have been proposed multiple times for Haskell,
too.

@ With open data types, there is no need for a special construct.

Andres L6éh and Ralf Hinze Open data types and open functions 18

An open data type for exceptions

| open data Exception :: x
Declaring a new exception:

| KeyNotFound :: Key — Exception

Andres L6éh and Ralf Hinze Open data types and open functions 19

An open data type for exceptions

| open data Exception :: x
Declaring a new exception:

| KeyNotFound :: Key — Exception
Raising the exception:

| lookup k fm = ... throw (KeyNotFound k). ..

Andres L6éh and Ralf Hinze Open data types and open functions 19

An open data type for exceptions

| open data Exception ::

Declaring a new exception:

| KeyNotFound :: Key — Exception

Raising the exception:

| lookup k fm = ... throw (KeyNotFound k). ..
Catching the exception:

catch (...)
(\e — case e of
KeyNotFound k — ...
_ — return (throw e))

Note: We have to re-raise the exception at the end of the handler.

Andres L6éh and Ralf Hinze Open data types and open functions 19

Overview

© Implementation
@ Directly
@ Separate compilation

Andres L6éh and Ralf Hinze Open data types and open functions 20

Translating to Haskell

@ In the following, we sketch two possibilities to implement open data
types and open functions by giving mappings to (plain) Haskell.

@ The first approach is a direct implementation of the semantics.

@ The second approach relies crucially on mutually recursive modules,
but supports separate compilation.

Andres L6éh and Ralf Hinze Open data types and open functions pal

A direct, naive implementation

module M; where
open data X :: *

Andres Loéh and Ralf Hinze Open data types and open functions 22

A direct, naive implementation

module M; where
open data X :: *

module My where
import M;

Co-oo =X
openf : X — ...
f(C...)=...f...

Andres Loéh and Ralf Hinze Open data types and open functions 22

A direct, naive implementation

module M; where
open data X :: *

module My where
import M;
Co-oo =X

openf : X — ...
f(C...)=...f...

module M3 where
import M;
import My

Du-o —X
f(D...)=...f...
g=...

Andres Loéh and Ralf Hinze Open data types and open functions 22

A direct, naive implementation

module M; where
open data X :: *

module My where
import M;
Co-oo =X

openf : X — ...
f(C...)=...f...

module M3 where
import M;
import My

Du-o —X
f(D...)=...f...
g=...

module M, where
f=...

Andres Loéh and Ralf Hinze Open data types and open functions 22

A direct, naive implementation

module M; where
open data X :: *

module My where
import M;
Co-oo =X

openf : X — ...
f(C...)=...f...

module M3 where
import M;
import My

Du-o —X
f(D...)=...f...
g=...

module M, where
f=...

module Main where
import M;
import My
import M3
import My

main = ... Ma.f.. . Mg.f...

Andres

and Ralf Hinze Open data types and open functions 22

A direct, naive implementation

| module M; where module Main where

open data X :: * data X where

X

module My where
import M;
Co-oo =X
openf : X — ...
f(C...)=...f... _

module M3 where
import M; main=...f...f ...
import My

Du-o —X
f(D...)=...f...
g=...

module M, where
f=...

module Main where
import M;
import My
import M3
import My

main = ... Ma.f.. . Mg.f...

Andres

and Ralf Hinze Open data types and open functions 22

A direct, naive implementation — continued

@ Like semantics: collapse program into a single module.
o All open data types become closed data types.

@ All open functions become closed functions, the equations are
reordered to respect best-fit pattern matching.

@ Advantage: easy to implement, certainly correct.

@ Big disadvantage: no separate compilation; inefficient compilation for
large programs.

@ No performance problems for the resulting programs, however.

Andres L6éh and Ralf Hinze Open data types and open functions 23

Splitting code and case selection

open eval :: Expr — Int

eval (Numn) =n

eval (Sum ej ep) = eval e; + eval 3
eval (Prod e; ep) = eval ej x eval e

Andres Loéh and Ralf Hinze Open data types and open functions 24

Splitting code and case selection

open eval :: Expr — Int

eval (Numn) =n

eval (Sum ej ep) = eval e; + eval 3
eval (Prod e; ep) = eval ej x eval e

eval (Numn) =eval;n
eval (Sum e e2) = evalp e e
eval (Prod ej ep) = evalz eg e

evaly n =n
evaly e1 e — eval e + eval e
evalz e1 e — eval e1 * eval es

Andres Loéh and Ralf Hinze Open data types and open functions 24

Implementation using several modules

module M; where
open data X :: *

module My where
import M;
Co-ov—X

openf :: X — ...
f(C...)=...f...

module M3 where
import M;
import My

Du-.o —X
f(D...)=...f...
g=...

module M, where
f=...

module Main where
import M;
import My
import M3
import My

main = ... Ma.f.. . Mg.f...

Andres L6éh and Ralf Hinze Open data types and open functions 25

Implementation using several modules

module M; where
open data X :: *

module My where
import M;
Co-ov—X

module M3 where
import M;
import My

Do =X

g=...

module M, where
f=...

module Main where

import M;
import My
import M3
import My

main = ... My.f...

Andres

openf :: X — ...
f(C...)=...f...

F(D...)=...f...

module Closure where
import M;
import My
import M3

data X where

and Ralf Hinze

Open data types and open functions

Implementation using several modules

module M; where module Closure where dule M; (module M;, module Closure) where

open data X :: * import My import Closure (data X :: x)
import My

module My where import M3

import M; data X where

Co-ov—X Cu-rr =X

openf :: X — ... b o X

f(C...)=...f... f(C...)="f...
f(D...)="f.

module M3 where

import M;

import My

Du-.o —X

f(D...)=...f...

g=...

module M, where
f=...

module Main where
import M;
import My
import M3
import My

main = ... Ma.f.. . Mg.f...

Andres

and Ralf Hinze Open data types and open functions

Implementation using several modules

module M; where module Closure where dule M; (module M;, module Closure) where
open data X :: * import My import Closure (data X :: x)

import My
module My where import M3 dule M3 (module Mj, module Closure) where
import M; data X where import Closure (C:: - -+ — X, f X — ...)
Cueer — X Cu-or—X import M;

D:--- — X

openf :: X — ... fi...=...f...
f(C...)=...f... f(C...)="f...

f(D...)="f.
module M3 where
import M;
import My
Du-.o —X
fF(D...)=...f...
g=...

module M, where
f=...

module Main where
import M;
import My
import M3
import My

main = ... Ma.f.. . Mg.f...

Andres

and Ralf Hinze Open data types and open functions

Implementation using several modules

module M; where module Closure where dule M; (module M;, module Closure) where
open data X :: * import My import Closure (data X :: x)

import My
module My where import M3 dule M3 (module Mj, module Closure) where
import M; data X where import Closure (C:: - -+ — X, f X — ...)
Coooo =X Coooo =X import M

D:... =X

openf :: X — ... fi...=...f...
f(C...)=...f... f(C...)="f...

F.)=F. module M3 (module M3, module Closure) where
module M3 where import Closure (D :: - - - — X)
import M; import M
import My import M
Di--—> X fo...=...f...
f(D...)=...f... g=...
g=...

module M, where
f=...

module Main where
import M;
import My
import M3
import My

main = ... Ma.f.. . Mg.f...

Andres

and Ralf Hinze Open data types and open functions

Implementation using several modules

module M; where module Closure where dule M; (module M;, module Closure) where
open data X :: * import My import Closure (data X :: x)
import My
module My where import M3 dule M3 (module Mj, module Closure) where
import M; data X where import Closure (C:: - -+ — X, f X — ...)
Coooo =X Coooo =X import M
D:... =X
openf :: X — ... fi...=...f...
f(C...)=...f... f(C...)="f...
f(D...)="f.

module M3 (module M3, module Closure) where
module M3 where import Closure (D :: - - - — X)
import M; import M
import My import M
Di--—> X fo...=...f...
f(D...)=...f... g=...
g=...

module M4 where
module M, where f=...
f=...

module Main where
import M;
import My
import M3
import My

main = ... Ma.f.. . Mg.f...

Andres

and Ralf Hinze Open data types and open functions

Implementation using several modules

module M; where
open data X :: *

module My where
import M;
Co-ov—X

openf :: X — ...

F(C...)=...f...

module M3 where
import M;
import My

Do =X

F(D...)=...f...

g=...

module M, where
f=...

module Main where
import M;
import My
import M3
import My

main = ... My.f...

Andres

module Closure where

import M;

import My

import M3

data X where
C =X
D: =X

f(C...)=1

f(D...)="f.

and Ralf Hinze

dule M; (module My, module Closure) where
import Closure (data X :: x)

dule My (module My, module Closure) where

import Closure (C:: - -+ — X, f X — ...)
import My
fl...=...f...

module M3 (module M3, module Closure) where

import Closure (D :: - - - — X)
import M;

import My

foo.=...f ..

g=...

module M4 where
f=...

module Main where
import M
import M
import M3
import My

main=...Ma.f...Mg.f...

Open data types and open functions

Implementation using several modules — continued

@ All open data types, and the pattern match logic of open functions
are placed into a special module Closure.

@ The module Closure must be recompiled whenever any open data
type or open function changes.

@ The rest of the program is translated module by module. Each
module imports Closure, but only uses a small part of it (made
explicit in an interface). Only if the interface or the module itself
changes, the module has to be recompiled.

@ Advantage: allows separate compilation (mostly).

e Disadvantage: slightly trickier to implement (but only a small
extension to GHC would be required).

Andres L6éh and Ralf Hinze Open data types and open functions 26

Overview

@ Conclusions

Andres L6éh and Ralf Hinze Open data types and open functions 27

Relation to type classes

@ Type classes allow to encode extensible data types, but one cannot
use pattern matching to define functions, and the decision has to be
made in the beginning (changing the code later is non-trivial).

@ Many properties and restrictions of type classes used:

One global meaning for open entities.
Limited possibilities to hide the visibility.
Only top-level open entities.
Overlapping instances resolution corresponds to best-fit pattern
matching.
@ More properties of type classes could be transferred:
o Partial evaluation of pattern matching.
e Automatic inference of uniquely determined values.

Andres L6éh and Ralf Hinze Open data types and open functions 28

In the paper

More about Haskell peculiarities:
@ Interaction with type classes
Full pattern language

o
@ Interaction with deriving
o

More about related work:

@ Lots of related work, but most approaches try to solve a more
complex problem.

Andres L6éh and Ralf Hinze Open data types and open functions 29

Conclusions

@ Very simple solution: no changes to the type system, no deep
semantics.

@ Open data types and open functions are syntactically similar to their
closed counterparts.

@ One easy implementation, one relatively efficient implementation.

@ Our approach applies to many interesting examples.

Andres L6éh and Ralf Hinze Open data types and open functions 30

	The language extension
	Data types
	Functions
	Pattern matching

	Applications
	Expression problem
	Generic programming
	Exceptions

	Implementation
	Directly
	Separate compilation

	Conclusions

