
Haskell and Explicit Effects
Andres Löh
CNRS / ISCPIF, Paris, 2023-04-04 — Copyright © 2023 Well-Typed LLP

Well-Typed
The Haskell Consultants



About me

▶ PhD (Utrecht University) 2004
▶ Lecturer at Utrecht University 2007–2010
▶ Partner at Well-Typed 2010–

Well-Typed



About Well-Typed

▶ Founded 1998.
▶ Haskell consulting (development, advice, support, training).
▶ Currently∼20 people, distributed over the USA, Europe, South

Africa and India.
▶ Clients mainly in Europe and USA (most work done remotely).

Well-Typed



Haskell



Haskell

▶ Originally an attempt to create a standard lazy functional
programming language.

▶ First version 1990.
▶ Most recent standard version still Haskell2010, but . . .
▶ Main implementation: GHC (Glasgow Haskell Compiler),

developed by Simon Peyton Jones and many contributors.
▶ GHC / Haskell is in continuous development, many language

extensions in active use (GHC2021).

Well-Typed



Haskell features

Technical:

▶ easy to define datatypes
▶ high abstraction level
▶ strong type system
▶ separation of effectful and pure computations
▶ very versatile

Social:

▶ large helpful community
▶ culture of solving problems properly
▶ open-source (BSD) by default
▶ vast amount of libraries in central repository (Hackage)

Well-Typed



Haskell features

Technical:

▶ easy to define datatypes
▶ high abstraction level
▶ strong type system
▶ separation of effectful and pure computations
▶ very versatile

Social:

▶ large helpful community
▶ culture of solving problems properly
▶ open-source (BSD) by default
▶ vast amount of libraries in central repository (Hackage)

Well-Typed



Most other languages . . .

int dbl(int x) {
return x + x;

}

int dblSpam(int x) {
sendSpamMails(x);
return x + x;

}

Both functions have the same type!

Well-Typed



Most other languages . . .

int dbl(int x) {
return x + x;

}

int dblSpam(int x) {
sendSpamMails(x);
return x + x;

}

Both functions have the same type!

Well-Typed



Haskell

dbl :: Int -> Int
dbl x = x + x

dblSpam :: Int -> IO Int
dblSpam x = do
sendSpamMails x
return (x + x)

The type of dblSpam reflects that it is performs side effects.

Well-Typed



Haskell

dbl :: Int -> Int
dbl x = x + x

dblSpam :: Int -> IO Int
dblSpam x = do
sendSpamMails x
return (x + x)

The type of dblSpam reflects that it is performs side effects.

Well-Typed



Haskell

dbl :: Int -> Int
dbl x = x + x

dblSpam :: Int -> IO Int
dblSpam x = do
sendSpamMails x
return (x + x)

The type of dblSpam reflects that it is performs side effects.

Well-Typed



Laws?

Do you think that

x + x

should be the same as
2 * x

?

Well-Typed



Laws!

In Haskell, it is!

But if dblSpam :: Int -> Int , then how many spam mails would

dblSpam + dblSpam

and
2 * dblSpam

send?

Well-Typed



Laws!

In Haskell, it is!

But if dblSpam :: Int -> Int , then how many spam mails would

dblSpam + dblSpam

and
2 * dblSpam

send?

Well-Typed



Explicit effects

▶ Side-effecting computations are marked as such in their types.
▶ Side-effecting computations are distinguished from their results.
▶ The absence of IO gives us peace of mind.

Well-Typed



More examples

Consider
getLine :: IO String

(as it is in Haskell) vs.
getLine :: String

Well-Typed



Reduction order should not matter

("a" <> "b") <> ("c" <> "d")

"ab" <> ("c" <> "d")

"ab" <> "cd"

"abcd"

Or:
("a" <> "b") <> ("c" <> "d")

("a" <> "b") <> "cd"

"ab" <> "cd"

"abcd"

Well-Typed



Reduction order should not matter

("a" <> "b") <> ("c" <> "d")

"ab" <> ("c" <> "d")

"ab" <> "cd"

"abcd"

Or:
("a" <> "b") <> ("c" <> "d")

("a" <> "b") <> "cd"

"ab" <> "cd"

"abcd"

Well-Typed



Reduction order should not matter

("a" <> "b") <> ("c" <> "d")

"ab" <> ("c" <> "d")

"ab" <> "cd"

"abcd"

Or:
("a" <> "b") <> ("c" <> "d")

("a" <> "b") <> "cd"

"ab" <> "cd"

"abcd"

Well-Typed



Reduction order should not matter

("a" <> "b") <> ("c" <> "d")

"ab" <> ("c" <> "d")

"ab" <> "cd"

"abcd"

Or:
("a" <> "b") <> ("c" <> "d")

("a" <> "b") <> "cd"

"ab" <> "cd"

"abcd"

Well-Typed



Reduction order should not matter

("a" <> "b") <> ("c" <> "d")

"ab" <> ("c" <> "d")

"ab" <> "cd"

"abcd"

Or:
("a" <> "b") <> ("c" <> "d")

("a" <> "b") <> "cd"

"ab" <> "cd"

"abcd"

Well-Typed



Reduction order should not matter

("a" <> "b") <> ("c" <> "d")

"ab" <> ("c" <> "d")

"ab" <> "cd"

"abcd"

Or:
("a" <> "b") <> ("c" <> "d")

("a" <> "b") <> "cd"

"ab" <> "cd"

"abcd"

Well-Typed



Reduction order should not matter

("a" <> "b") <> ("c" <> "d")

"ab" <> ("c" <> "d")

"ab" <> "cd"

"abcd"

Or:
("a" <> "b") <> ("c" <> "d")

("a" <> "b") <> "cd"

"ab" <> "cd"

"abcd"

Well-Typed



Reduction order should not matter

("a" <> "b") <> ("c" <> "d")

"ab" <> ("c" <> "d")

"ab" <> "cd"

"abcd"

Or:
("a" <> "b") <> ("c" <> "d")

("a" <> "b") <> "cd"

"ab" <> "cd"

"abcd"

Well-Typed



Reduction order with uncontrolled effects matters

("a" <> getLine) <> ("b" <> getLine)

("a" <> "Frodo") <> ("b" <> getLine)

"aFrodo" <> ("b" <> getLine)

"aFrodo" <> ("b" <> "Sam")

"aFrodo" <> "bSam"

"aFrodobSam"

("a" <> getLine) <> ("b" <> getLine)

("a" <> getLine) <> ("b" <> "Frodo")

("a" <> getLine) <> "bFrodo"

("a" <> "Sam") <> "bFrodo"

"aSam" <> "bFrodo"

"aSambFrodo"

Well-Typed



Reduction order with uncontrolled effects matters

("a" <> getLine) <> ("b" <> getLine)

("a" <> "Frodo") <> ("b" <> getLine)

"aFrodo" <> ("b" <> getLine)

"aFrodo" <> ("b" <> "Sam")

"aFrodo" <> "bSam"

"aFrodobSam"

("a" <> getLine) <> ("b" <> getLine)

("a" <> getLine) <> ("b" <> "Frodo")

("a" <> getLine) <> "bFrodo"

("a" <> "Sam") <> "bFrodo"

"aSam" <> "bFrodo"

"aSambFrodo"

Well-Typed



Reduction order with uncontrolled effects matters

("a" <> getLine) <> ("b" <> getLine)

("a" <> "Frodo") <> ("b" <> getLine)

"aFrodo" <> ("b" <> getLine)

"aFrodo" <> ("b" <> "Sam")

"aFrodo" <> "bSam"

"aFrodobSam"

("a" <> getLine) <> ("b" <> getLine)

("a" <> getLine) <> ("b" <> "Frodo")

("a" <> getLine) <> "bFrodo"

("a" <> "Sam") <> "bFrodo"

"aSam" <> "bFrodo"

"aSambFrodo"

Well-Typed



Reduction order with uncontrolled effects matters

("a" <> getLine) <> ("b" <> getLine)

("a" <> "Frodo") <> ("b" <> getLine)

"aFrodo" <> ("b" <> getLine)

"aFrodo" <> ("b" <> "Sam")

"aFrodo" <> "bSam"

"aFrodobSam"

("a" <> getLine) <> ("b" <> getLine)

("a" <> getLine) <> ("b" <> "Frodo")

("a" <> getLine) <> "bFrodo"

("a" <> "Sam") <> "bFrodo"

"aSam" <> "bFrodo"

"aSambFrodo"

Well-Typed



Reduction order with uncontrolled effects matters

("a" <> getLine) <> ("b" <> getLine)

("a" <> "Frodo") <> ("b" <> getLine)

"aFrodo" <> ("b" <> getLine)

"aFrodo" <> ("b" <> "Sam")

"aFrodo" <> "bSam"

"aFrodobSam"

("a" <> getLine) <> ("b" <> getLine)

("a" <> getLine) <> ("b" <> "Frodo")

("a" <> getLine) <> "bFrodo"

("a" <> "Sam") <> "bFrodo"

"aSam" <> "bFrodo"

"aSambFrodo"

Well-Typed



Reduction order with uncontrolled effects matters

("a" <> getLine) <> ("b" <> getLine)

("a" <> "Frodo") <> ("b" <> getLine)

"aFrodo" <> ("b" <> getLine)

"aFrodo" <> ("b" <> "Sam")

"aFrodo" <> "bSam"

"aFrodobSam"

("a" <> getLine) <> ("b" <> getLine)

("a" <> getLine) <> ("b" <> "Frodo")

("a" <> getLine) <> "bFrodo"

("a" <> "Sam") <> "bFrodo"

"aSam" <> "bFrodo"

"aSambFrodo"

Well-Typed



Reduction order with uncontrolled effects matters

("a" <> getLine) <> ("b" <> getLine)

("a" <> "Frodo") <> ("b" <> getLine)

"aFrodo" <> ("b" <> getLine)

"aFrodo" <> ("b" <> "Sam")

"aFrodo" <> "bSam"

"aFrodobSam"

("a" <> getLine) <> ("b" <> getLine)

("a" <> getLine) <> ("b" <> "Frodo")

("a" <> getLine) <> "bFrodo"

("a" <> "Sam") <> "bFrodo"

"aSam" <> "bFrodo"

"aSambFrodo"

Well-Typed



Reduction order with uncontrolled effects matters

("a" <> getLine) <> ("b" <> getLine)

("a" <> "Frodo") <> ("b" <> getLine)

"aFrodo" <> ("b" <> getLine)

"aFrodo" <> ("b" <> "Sam")

"aFrodo" <> "bSam"

"aFrodobSam"

("a" <> getLine) <> ("b" <> getLine)

("a" <> getLine) <> ("b" <> "Frodo")

("a" <> getLine) <> "bFrodo"

("a" <> "Sam") <> "bFrodo"

"aSam" <> "bFrodo"

"aSambFrodo"

Well-Typed



Reduction order with uncontrolled effects matters

("a" <> getLine) <> ("b" <> getLine)

("a" <> "Frodo") <> ("b" <> getLine)

"aFrodo" <> ("b" <> getLine)

"aFrodo" <> ("b" <> "Sam")

"aFrodo" <> "bSam"

"aFrodobSam"

("a" <> getLine) <> ("b" <> getLine)

("a" <> getLine) <> ("b" <> "Frodo")

("a" <> getLine) <> "bFrodo"

("a" <> "Sam") <> "bFrodo"

"aSam" <> "bFrodo"

"aSambFrodo"

Well-Typed



Reduction order with uncontrolled effects matters

("a" <> getLine) <> ("b" <> getLine)

("a" <> "Frodo") <> ("b" <> getLine)

"aFrodo" <> ("b" <> getLine)

"aFrodo" <> ("b" <> "Sam")

"aFrodo" <> "bSam"

"aFrodobSam"

("a" <> getLine) <> ("b" <> getLine)

("a" <> getLine) <> ("b" <> "Frodo")

("a" <> getLine) <> "bFrodo"

("a" <> "Sam") <> "bFrodo"

"aSam" <> "bFrodo"

"aSambFrodo"

Well-Typed



Reduction order with uncontrolled effects matters

("a" <> getLine) <> ("b" <> getLine)

("a" <> "Frodo") <> ("b" <> getLine)

"aFrodo" <> ("b" <> getLine)

"aFrodo" <> ("b" <> "Sam")

"aFrodo" <> "bSam"

"aFrodobSam"

("a" <> getLine) <> ("b" <> getLine)

("a" <> getLine) <> ("b" <> "Frodo")

("a" <> getLine) <> "bFrodo"

("a" <> "Sam") <> "bFrodo"

"aSam" <> "bFrodo"

"aSambFrodo"

Well-Typed



Reduction order with uncontrolled effects matters

("a" <> getLine) <> ("b" <> getLine)

("a" <> "Frodo") <> ("b" <> getLine)

"aFrodo" <> ("b" <> getLine)

"aFrodo" <> ("b" <> "Sam")

"aFrodo" <> "bSam"

"aFrodobSam"

("a" <> getLine) <> ("b" <> getLine)

("a" <> getLine) <> ("b" <> "Frodo")

("a" <> getLine) <> "bFrodo"

("a" <> "Sam") <> "bFrodo"

"aSam" <> "bFrodo"

"aSambFrodo"

Well-Typed



Lazy evaluation

take 1 (("a" <> "b") <> ("c" <> "d"))

reduces to "a" .

take 1 (("a" <> getLine) <> ("b" <> getLine))

reduces to "a" , but how many lines of input should it read?

Well-Typed



Lazy evaluation

take 1 (("a" <> "b") <> ("c" <> "d"))

reduces to "a" .

take 1 (("a" <> getLine) <> ("b" <> getLine))

reduces to "a" , but how many lines of input should it read?

Well-Typed



Explicit effects

▶ Side-effecting computations are marked as such in their types.
▶ Side-effecting computations are distinguished from their results.
▶ The absence of IO gives us peace of mind.

▶ Decouple effects from the order of evaluation.
▶ Order and number of effects are always explicit.

Well-Typed



Explicit effects

▶ Side-effecting computations are marked as such in their types.
▶ Side-effecting computations are distinguished from their results.
▶ The absence of IO gives us peace of mind.
▶ Decouple effects from the order of evaluation.
▶ Order and number of effects are always explicit.

Well-Typed



No escape

There is no⋆ function of type

IO a -> a

because we should not lie!

⋆(None that we speak of.)

Well-Typed



Effects everywhere?



Separation of concerns

"Do you like effects?"

"They're everywhere though."

no

"Do you want to control them?"

"Good luck!"

no

"Try Haskell!"

yes

yes

Well-Typed



A datatype for dialogues

data Dialogue =
Ask String Dialogue Dialogue

| Done String

effectsConversation :: Dialogue
effectsConversation =
Ask "Do you like effects?"
(Done "They're everywhere though.")
(Ask "Do you want to control them?"
(Done "Good luck!")
(Done "Try Haskell!")

)

Well-Typed



A datatype for dialogues

data Dialogue =
Ask String Dialogue Dialogue

| Done String

effectsConversation :: Dialogue
effectsConversation =
Ask "Do you like effects?"
(Done "They're everywhere though.")
(Ask "Do you want to control them?"
(Done "Good luck!")
(Done "Try Haskell!")

)

Well-Typed



Running a dialogue

interactiveDialogue :: Dialogue -> IO ()
interactiveDialogue (Ask question no yes) = do
response <- askBooleanQuestion question
if response
then interactiveDialogue yes
else interactiveDialogue no

interactiveDialogue (Done response) =
putStrLn response

askBooleanQuestion :: String -> IO Bool
askBooleanQuestion question = do
putStrLn question
getBool

getBool :: IO Bool
getBool = do
c <- getChar
putStrLn ""
if c == 'y'
then pure True
else if c == 'n'
then pure False
else do
putStrLn "Please type 'y' or 'n'"
getBool

Well-Typed



Running a dialogue

interactiveDialogue :: Dialogue -> IO ()
interactiveDialogue (Ask question no yes) = do
response <- askBooleanQuestion question
if response
then interactiveDialogue yes
else interactiveDialogue no

interactiveDialogue (Done response) =
putStrLn response

askBooleanQuestion :: String -> IO Bool
askBooleanQuestion question = do
putStrLn question
getBool

getBool :: IO Bool
getBool = do
c <- getChar
putStrLn ""
if c == 'y'
then pure True
else if c == 'n'
then pure False
else do
putStrLn "Please type 'y' or 'n'"
getBool

Well-Typed



Running a dialogue in the browser
webDialogue :: Dialogue -> IO ()
webDialogue d =
scotty 8000 $ do
get "/" $ from ""
get "/:responses" $ do
responseString <- param "responses"
from responseString

where
from responseString = do
let responses = mapMaybe parseResponse responseString
case replay d responses of
Just (Ask question _ _) ->
htmlPage $ do
p (string question)
ul $ do
li (a ! href (stringValue (responseString <> "y")) $ "yes")
li (a ! href (stringValue (responseString <> "n")) $ "no")

Just (Done response) ->
htmlPage $
p (string response)

Nothing -> status status404

htmlPage :: Html -> ActionM ()
htmlPage =
html . renderHtml . H.html . H.body

parseResponse :: Char -> Maybe Bool
parseResponse 'y' = Just True
parseResponse 'n' = Just False
parseResponse _ = Nothing

replay :: Dialogue -> [Bool] -> Maybe Dialogue
replay (Ask _ _ yes) (True : responses) = replay yes responses
replay (Ask _ no _ ) (False : responses) = replay no responses
replay d [] = Just d
replay _ _ = Nothing

Well-Typed



IO or nothing?

IO a -- IO, exceptions, random numbers, concurrency, . . .
Gen a -- random numbers only
ST s a -- mutable variables only
STM a -- software transactional memory log variables only
State s a -- (persistent) state only
Error a -- exceptions only
Signal a -- time-changing value
...

New effect types can be defined. Effects can be combined.

Well-Typed



Conclusions

▶ Precise types marking the presence of side effects.
▶ Require us to be explicit about order when effects are present.
▶ Peace of mind if IO is absent.
▶ Not a high price to pay.
▶ IO actions are first class.
▶ Encourages coding style that limits side effects.
▶ More options for testing.
▶ More precise effect types possible.

andres@well-typed.com

Well-Typed


