
Staged Sums of Products
Haskell Symposium 2020

Matthew Pickering, University of Bristol
Andres Löh, Well-Typed LLP
Nicolas Wu, Imperial College London

2020-08-28

Example: semigroup append

class Semigroup a where
(<>) :: a -> a -> a -- supposed to be associative

data Foo = Foo [Int] Ordering Text

sappendFoo :: Foo -> Foo -> Foo
sappendFoo (Foo is1 o1 t1) (Foo is2 o2 t2) =

Foo (is1 <> is2) (o1 <> o2) (t1 <> t2)

Example: semigroup append

class Semigroup a where
(<>) :: a -> a -> a -- supposed to be associative

data Foo = Foo [Int] Ordering Text

sappendFoo :: Foo -> Foo -> Foo
sappendFoo (Foo is1 o1 t1) (Foo is2 o2 t2) =

Foo (is1 <> is2) (o1 <> o2) (t1 <> t2)

Example: semigroup append

class Semigroup a where
(<>) :: a -> a -> a -- supposed to be associative

data Foo = Foo [Int] Ordering Text

sappendFoo :: Foo -> Foo -> Foo
sappendFoo (Foo is1 o1 t1) (Foo is2 o2 t2) =
Foo (is1 <> is2) (o1 <> o2) (t1 <> t2)

Example: semigroup append

class Semigroup a where
(<>) :: a -> a -> a -- supposed to be associative

data Foo = Foo [Int] Ordering Text

sappendFoo :: Foo -> Foo -> Foo
sappendFoo (Foo is1 o1 t1) (Foo is2 o2 t2) =
Foo (is1 <> is2) (o1 <> o2) (t1 <> t2)

Example: semigroup append

class Semigroup a where
(<>) :: a -> a -> a -- supposed to be associative

data Foo = Foo [Int] Ordering Text

sappendFoo :: Foo -> Foo -> Foo
sappendFoo (Foo is1 o1 t1) (Foo is2 o2 t2) =
Foo (is1 <> is2) (o1 <> o2) (t1 <> t2)

sappendFoo (Foo [1, 2] LT "has") (Foo [3, 4] EQ "kell")

Example: semigroup append

class Semigroup a where
(<>) :: a -> a -> a -- supposed to be associative

data Foo = Foo [Int] Ordering Text

sappendFoo :: Foo -> Foo -> Foo
sappendFoo (Foo is1 o1 t1) (Foo is2 o2 t2) =
Foo (is1 <> is2) (o1 <> o2) (t1 <> t2)

Foo ([1, 2] <> [3, 4]) (LT <> EQ) ("has" <> "kell")

Example: semigroup append

class Semigroup a where
(<>) :: a -> a -> a -- supposed to be associative

data Foo = Foo [Int] Ordering Text

sappendFoo :: Foo -> Foo -> Foo
sappendFoo (Foo is1 o1 t1) (Foo is2 o2 t2) =
Foo (is1 <> is2) (o1 <> o2) (t1 <> t2)

Foo [1, 2, 3, 4] LT "haskell"

Same idea applies to product types in general . . .

Example: semigroup append

class Semigroup a where
(<>) :: a -> a -> a -- supposed to be associative

data Foo = Foo [Int] Ordering Text

sappendFoo :: Foo -> Foo -> Foo
sappendFoo (Foo is1 o1 t1) (Foo is2 o2 t2) =
Foo (is1 <> is2) (o1 <> o2) (t1 <> t2)

Foo [1, 2, 3, 4] LT "haskell"

Same idea applies to product types in general . . .

generics-sop

True Sums of Products

Edsko de Vries

Well-Typed LLP

edsko@well-typed.com

Andres Löh

Well-Typed LLP

andres@well-typed.com

Abstract

We introduce the sum-of-products (SOP) view for datatype-generic

programming (in Haskell). While many of the libraries that are

commonly in use today represent datatypes as arbitrary combi-

nations of binary sums and products, SOP reflects the structure

of datatypes more faithfully: each datatype is a single n-ary sum,

where each component of the sum is a single n-ary product. This

representation turns out to be expressible accurately in GHC with

today’s extensions. The resulting list-like structure of datatypes al-

lows for the definition of powerful high-level traversal combina-

tors, which in turn encourage the definition of generic functions in

a compositional and concise style. A major plus of the SOP view is

that it allows to separate function-specific metadata from the main

structural representation and recombining this information later.

Categories and Subject Descriptors D.1.1 [Programming Tech-

niques]: Applicative (Functional) Programming; D.3.3 [Language

Constructs and Features]: Data types and structures

Keywords datatype-generic programming; sums of products; uni-

verses; generic views; JSON; lenses; metadata

1. Introduction

The goal of datatype-generic programming is to make use of a

common underlying structure of datatypes in order to define pro-

grams in such a way that they automatically work for a large class

of datatypes. Using datatype-generic programs makes it easier to

evolve and refactor programs, because when datatypes change,

datatype-generic functions adapt. Typical examples of datatype-

generic functions include structural equality, all sorts of conversion

functions such as serialisation and deserialisation, and all kinds of

traversals such as maps and folds.

The exact way in which a common structure of datatypes is

established has a significant effect on which generic functions can

be expressed easily or at all, the programming style they encourage,

how easy they are to understand or adapt, and how efficient the

generated code is.

Not every problem domain has exactly the same requirements.

The combination of the general appeal of datatype-generic pro-

gramming and the diversity of goals and scenarios in which it is

employed make it unsurprising that many different approaches ex-

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

Copyright is held by the owner/author(s). Publication rights licensed to ACM.

ACM 978-1-4503-3042-8/14/08. . . $15.00.

http://dx.doi.org/10.1145/2633628.2633634

ist, even within a single programming language such as Haskell.

These approaches differ in a multitude of different ways, such as

which and how many functions are predefined, which features of

the Haskell language are being used, how portable they are, how

much emphasis on efficiency they place, and so on. Their main

distinguishing feature, however, is how they view the structure of

datatypes.

Not all of these views are completely different from each other.

Many libraries are based on variations of what is typically called a

“sum of products” view. For example, the generic representation of

a binary tree type such as

data Tree a = Leaf | Branch (Tree a) a (Tree a)

using the GHC.Generics library is essentially isomorphic to

Either () (Tree a, (a,Tree a))

where Either is a binary sum type, and pairs (,) are a binary product

type. The actual representation is more complicated, because it

involves metadata such as type and constructor names etc., but let’s

focus on the pure structure for now.

Strictly speaking, the classification as a “sum of products” is not

entirely accurate. Technically, we have not a sum of a product, but

a sum of a product of products; and of course if we represent types

using binary sums and products, then nothing in the types stops

us from having products of sums, or sums of products of sums,

etc. In practice the only nesting that is used is some stacking of

sums of some stacking of products (usually to the right, sometimes

balanced), but this is by implicit assumption only.

For some generic functions, such as equality, this does not mat-

ter. However, many generic functions care about the shape of the

datatype. For instance, a function that constructs a default value

might want to prefer a nullary constructor over other constructors

(cf. Section 5.3). Similarly, when picking a random value for a

datatype with multiple constructors we might want to vary the prob-

ability of picking a constructor depending on how many arguments

it has (cf. Section 5.4). In general, defining operations that are not

completely local, but need information about other constructors, or

several constructor arguments at once, are surprisingly difficult to

define using a binary view.

As an example, let us consider a function garity that counts the

arities of all constructors of a datatype. Using GHC.Generics (Ma-

galhães et al. 2010), a possible implementation is as follows:

class GArities (a ::∗→ ∗)
where

garities :: Proxy a→ [Int]

instance GArities f⇒ GArities (M1 i c f) where

garities = garities (Proxy :: Proxy f)

instance GArities V1
where garities = []

instance GArities U1 where garities = [0]

instance GArities (K1 R a) where garities = [1]

83
WGP’14, August 31, 2014, Gothenburg, Sweden.

WGP 2014

▶ Types are represented as n-ary sums (NS)
and n-ary products (NP).

▶ Conversion functions and lots of combinators.
▶ Generic functions written in a type-safe and concise style.

Generic semigroup append

gsappend :: (IsProductType a xs, All Semigroup xs) => a -> a -> a
gsappend a1 a2 =
productTypeTo
(czipWithNP (Proxy @Semigroup) (mapIII (<>))
(productTypeFrom a1) (productTypeFrom a2))

sappendFoo :: Foo -> Foo -> Foo
sappendFoo = gsappend

Generic semigroup append

gsappend :: (IsProductType a xs, All Semigroup xs) => a -> a -> a
gsappend a1 a2 =
productTypeTo
(czipWithNP (Proxy @Semigroup) (mapIII (<>))
(productTypeFrom a1) (productTypeFrom a2))

sappendFoo :: Foo -> Foo -> Foo
sappendFoo = gsappend

Generic semigroup append

gsappend :: (IsProductType a xs, All Semigroup xs) => a -> a -> a
gsappend a1 a2 =
productTypeTo
(czipWithNP (Proxy @Semigroup) (mapIII (<>))
(productTypeFrom a1) (productTypeFrom a2))

sappendFoo :: Foo -> Foo -> Foo
sappendFoo = gsappend

productTypeFrom :: Foo -> NP I '[[Int], Ordering, Text]
productTypeFrom (Foo is o t) = I is :* I o :* I t :* Nil

≈ is × o × t

mapIII :: (a -> b -> c) -> I a -> I b -> I c
mapIII op (I x) (I y) = I (op x y)

productTypeTo :: NP I '[[Int], Ordering, Text] -> Foo
productTypeTo (I is :* I o :* I t :* Nil) = Foo is o t

Generic semigroup append

gsappend :: (IsProductType a xs, All Semigroup xs) => a -> a -> a
gsappend a1 a2 =
productTypeTo
(czipWithNP (Proxy @Semigroup) (mapIII (<>))
(productTypeFrom a1) (productTypeFrom a2))

sappendFoo :: Foo -> Foo -> Foo
sappendFoo = gsappend

sappendFoo
(Foo [1, 2] LT "has")
(Foo [3, 4] EQ "kell")

productTypeFrom :: Foo -> NP I '[[Int], Ordering, Text]
productTypeFrom (Foo is o t) = I is :* I o :* I t :* Nil

≈ is × o × t

mapIII :: (a -> b -> c) -> I a -> I b -> I c
mapIII op (I x) (I y) = I (op x y)

productTypeTo :: NP I '[[Int], Ordering, Text] -> Foo
productTypeTo (I is :* I o :* I t :* Nil) = Foo is o t

Generic semigroup append

gsappend :: (IsProductType a xs, All Semigroup xs) => a -> a -> a
gsappend a1 a2 =
productTypeTo
(czipWithNP (Proxy @Semigroup) (mapIII (<>))
(productTypeFrom a1) (productTypeFrom a2))

sappendFoo :: Foo -> Foo -> Foo
sappendFoo = gsappend

productTypeTo
(czipWithNP (Proxy @Semigroup) (mapIII (<>))

(productTypeFrom (Foo [1, 2] LT "has"))
(productTypeFrom (Foo [3, 4] EQ "kell")))

productTypeFrom :: Foo -> NP I '[[Int], Ordering, Text]
productTypeFrom (Foo is o t) = I is :* I o :* I t :* Nil

≈ is × o × t

mapIII :: (a -> b -> c) -> I a -> I b -> I c
mapIII op (I x) (I y) = I (op x y)

productTypeTo :: NP I '[[Int], Ordering, Text] -> Foo
productTypeTo (I is :* I o :* I t :* Nil) = Foo is o t

Generic semigroup append

gsappend :: (IsProductType a xs, All Semigroup xs) => a -> a -> a
gsappend a1 a2 =
productTypeTo
(czipWithNP (Proxy @Semigroup) (mapIII (<>))
(productTypeFrom a1) (productTypeFrom a2))

sappendFoo :: Foo -> Foo -> Foo
sappendFoo = gsappend

productTypeTo
(czipWithNP (Proxy @Semigroup) (mapIII (<>))

(productTypeFrom (Foo [1, 2] LT "has"))
(productTypeFrom (Foo [3, 4] EQ "kell")))

productTypeFrom :: Foo -> NP I '[[Int], Ordering, Text]
productTypeFrom (Foo is o t) = I is :* I o :* I t :* Nil

≈ is × o × tmapIII :: (a -> b -> c) -> I a -> I b -> I c
mapIII op (I x) (I y) = I (op x y)

productTypeTo :: NP I '[[Int], Ordering, Text] -> Foo
productTypeTo (I is :* I o :* I t :* Nil) = Foo is o t

Generic semigroup append

gsappend :: (IsProductType a xs, All Semigroup xs) => a -> a -> a
gsappend a1 a2 =
productTypeTo
(czipWithNP (Proxy @Semigroup) (mapIII (<>))
(productTypeFrom a1) (productTypeFrom a2))

sappendFoo :: Foo -> Foo -> Foo
sappendFoo = gsappend

productTypeTo
(czipWithNP (Proxy @Semigroup) (mapIII (<>))

(productTypeFrom (Foo [1, 2] LT "has"))
(productTypeFrom (Foo [3, 4] EQ "kell")))

productTypeFrom :: Foo -> NP I '[[Int], Ordering, Text]
productTypeFrom (Foo is o t) = I is :* I o :* I t :* Nil

≈ I is × I o × I t

mapIII :: (a -> b -> c) -> I a -> I b -> I c
mapIII op (I x) (I y) = I (op x y)

productTypeTo :: NP I '[[Int], Ordering, Text] -> Foo
productTypeTo (I is :* I o :* I t :* Nil) = Foo is o t

Generic semigroup append

gsappend :: (IsProductType a xs, All Semigroup xs) => a -> a -> a
gsappend a1 a2 =
productTypeTo
(czipWithNP (Proxy @Semigroup) (mapIII (<>))
(productTypeFrom a1) (productTypeFrom a2))

sappendFoo :: Foo -> Foo -> Foo
sappendFoo = gsappend

productTypeTo
(czipWithNP (Proxy @Semigroup) (mapIII (<>))

(productTypeFrom (Foo [1, 2] LT "has"))
(productTypeFrom (Foo [3, 4] EQ "kell")))

productTypeFrom :: Foo -> NP I '[[Int], Ordering, Text]
productTypeFrom (Foo is o t) = I is :* I o :* I t :* Nil

≈ is × o × t

mapIII :: (a -> b -> c) -> I a -> I b -> I c
mapIII op (I x) (I y) = I (op x y)

productTypeTo :: NP I '[[Int], Ordering, Text] -> Foo
productTypeTo (I is :* I o :* I t :* Nil) = Foo is o t

Generic semigroup append

gsappend :: (IsProductType a xs, All Semigroup xs) => a -> a -> a
gsappend a1 a2 =
productTypeTo
(czipWithNP (Proxy @Semigroup) (mapIII (<>))
(productTypeFrom a1) (productTypeFrom a2))

sappendFoo :: Foo -> Foo -> Foo
sappendFoo = gsappend

productTypeTo
(czipWithNP (Proxy @Semigroup) (mapIII (<>))
(I [1, 2] :* I LT :* I "has" :* Nil)
(I [3, 4] :* I EQ :* I "kell" :* Nil))

productTypeFrom :: Foo -> NP I '[[Int], Ordering, Text]
productTypeFrom (Foo is o t) = I is :* I o :* I t :* Nil

≈ is × o × t

mapIII :: (a -> b -> c) -> I a -> I b -> I c
mapIII op (I x) (I y) = I (op x y)

productTypeTo :: NP I '[[Int], Ordering, Text] -> Foo
productTypeTo (I is :* I o :* I t :* Nil) = Foo is o t

Generic semigroup append

gsappend :: (IsProductType a xs, All Semigroup xs) => a -> a -> a
gsappend a1 a2 =
productTypeTo
(czipWithNP (Proxy @Semigroup) (mapIII (<>))
(productTypeFrom a1) (productTypeFrom a2))

sappendFoo :: Foo -> Foo -> Foo
sappendFoo = gsappend

productTypeTo
(czipWithNP (Proxy @Semigroup) (mapIII (<>))
(I [1, 2] :* I LT :* I "has" :* Nil)
(I [3, 4] :* I EQ :* I "kell" :* Nil))

productTypeFrom :: Foo -> NP I '[[Int], Ordering, Text]
productTypeFrom (Foo is o t) = I is :* I o :* I t :* Nil

≈ is × o × t

mapIII :: (a -> b -> c) -> I a -> I b -> I c
mapIII op (I x) (I y) = I (op x y)

productTypeTo :: NP I '[[Int], Ordering, Text] -> Foo
productTypeTo (I is :* I o :* I t :* Nil) = Foo is o t

Generic semigroup append

gsappend :: (IsProductType a xs, All Semigroup xs) => a -> a -> a
gsappend a1 a2 =
productTypeTo
(czipWithNP (Proxy @Semigroup) (mapIII (<>))
(productTypeFrom a1) (productTypeFrom a2))

sappendFoo :: Foo -> Foo -> Foo
sappendFoo = gsappend

productTypeTo
(czipWithNP (Proxy @Semigroup) (mapIII (<>))
(I [1, 2] :* I LT :* I "has" :* Nil)
(I [3, 4] :* I EQ :* I "kell" :* Nil))

productTypeFrom :: Foo -> NP I '[[Int], Ordering, Text]
productTypeFrom (Foo is o t) = I is :* I o :* I t :* Nil

≈ is × o × t

mapIII :: (a -> b -> c) -> I a -> I b -> I c
mapIII op (I x) (I y) = I (op x y)

productTypeTo :: NP I '[[Int], Ordering, Text] -> Foo
productTypeTo (I is :* I o :* I t :* Nil) = Foo is o t

Generic semigroup append

gsappend :: (IsProductType a xs, All Semigroup xs) => a -> a -> a
gsappend a1 a2 =
productTypeTo
(czipWithNP (Proxy @Semigroup) (mapIII (<>))
(productTypeFrom a1) (productTypeFrom a2))

sappendFoo :: Foo -> Foo -> Foo
sappendFoo = gsappend

productTypeTo
((mapIII (<>) (I [1, 2]) (I [3, 4]))
:* (mapIII (<>) (I LT) (I EQ))
:* (mapIII (<>) (I "has") (I "kell"))
:* Nil
)

productTypeFrom :: Foo -> NP I '[[Int], Ordering, Text]
productTypeFrom (Foo is o t) = I is :* I o :* I t :* Nil

≈ is × o × t

mapIII :: (a -> b -> c) -> I a -> I b -> I c
mapIII op (I x) (I y) = I (op x y)

productTypeTo :: NP I '[[Int], Ordering, Text] -> Foo
productTypeTo (I is :* I o :* I t :* Nil) = Foo is o t

Generic semigroup append

gsappend :: (IsProductType a xs, All Semigroup xs) => a -> a -> a
gsappend a1 a2 =
productTypeTo
(czipWithNP (Proxy @Semigroup) (mapIII (<>))
(productTypeFrom a1) (productTypeFrom a2))

sappendFoo :: Foo -> Foo -> Foo
sappendFoo = gsappend

productTypeTo
((mapIII (<>) (I [1, 2]) (I [3, 4]))
:* (mapIII (<>) (I LT) (I EQ))
:* (mapIII (<>) (I "has") (I "kell"))
:* Nil
)

productTypeFrom :: Foo -> NP I '[[Int], Ordering, Text]
productTypeFrom (Foo is o t) = I is :* I o :* I t :* Nil

≈ is × o × t

mapIII :: (a -> b -> c) -> I a -> I b -> I c
mapIII op (I x) (I y) = I (op x y)

productTypeTo :: NP I '[[Int], Ordering, Text] -> Foo
productTypeTo (I is :* I o :* I t :* Nil) = Foo is o t

Generic semigroup append

gsappend :: (IsProductType a xs, All Semigroup xs) => a -> a -> a
gsappend a1 a2 =
productTypeTo
(czipWithNP (Proxy @Semigroup) (mapIII (<>))
(productTypeFrom a1) (productTypeFrom a2))

sappendFoo :: Foo -> Foo -> Foo
sappendFoo = gsappend

productTypeTo
(I ([1, 2] <> [3, 4])
:* I (LT <> EQ)
:* I ("has" <> "kell")
:* Nil
)

productTypeFrom :: Foo -> NP I '[[Int], Ordering, Text]
productTypeFrom (Foo is o t) = I is :* I o :* I t :* Nil

≈ is × o × t

mapIII :: (a -> b -> c) -> I a -> I b -> I c
mapIII op (I x) (I y) = I (op x y)

productTypeTo :: NP I '[[Int], Ordering, Text] -> Foo
productTypeTo (I is :* I o :* I t :* Nil) = Foo is o t

Generic semigroup append

gsappend :: (IsProductType a xs, All Semigroup xs) => a -> a -> a
gsappend a1 a2 =
productTypeTo
(czipWithNP (Proxy @Semigroup) (mapIII (<>))
(productTypeFrom a1) (productTypeFrom a2))

sappendFoo :: Foo -> Foo -> Foo
sappendFoo = gsappend

productTypeTo
(I ([1, 2] <> [3, 4])
:* I (LT <> EQ)
:* I ("has" <> "kell")
:* Nil
)

productTypeFrom :: Foo -> NP I '[[Int], Ordering, Text]
productTypeFrom (Foo is o t) = I is :* I o :* I t :* Nil

≈ is × o × t

mapIII :: (a -> b -> c) -> I a -> I b -> I c
mapIII op (I x) (I y) = I (op x y)

productTypeTo :: NP I '[[Int], Ordering, Text] -> Foo
productTypeTo (I is :* I o :* I t :* Nil) = Foo is o t

Generic semigroup append

gsappend :: (IsProductType a xs, All Semigroup xs) => a -> a -> a
gsappend a1 a2 =
productTypeTo
(czipWithNP (Proxy @Semigroup) (mapIII (<>))
(productTypeFrom a1) (productTypeFrom a2))

sappendFoo :: Foo -> Foo -> Foo
sappendFoo = gsappend

Foo
([1, 2] <> [3, 4])
(LT <> EQ)
("has" <> "kell")

productTypeFrom :: Foo -> NP I '[[Int], Ordering, Text]
productTypeFrom (Foo is o t) = I is :* I o :* I t :* Nil

≈ is × o × t

mapIII :: (a -> b -> c) -> I a -> I b -> I c
mapIII op (I x) (I y) = I (op x y)

productTypeTo :: NP I '[[Int], Ordering, Text] -> Foo
productTypeTo (I is :* I o :* I t :* Nil) = Foo is o t

Generic semigroup append

gsappend :: (IsProductType a xs, All Semigroup xs) => a -> a -> a
gsappend a1 a2 =
productTypeTo
(czipWithNP (Proxy @Semigroup) (mapIII (<>))
(productTypeFrom a1) (productTypeFrom a2))

sappendFoo :: Foo -> Foo -> Foo
sappendFoo = gsappend

Foo [1, 2, 3, 4] LT "haskell"

productTypeFrom :: Foo -> NP I '[[Int], Ordering, Text]
productTypeFrom (Foo is o t) = I is :* I o :* I t :* Nil

≈ is × o × t

mapIII :: (a -> b -> c) -> I a -> I b -> I c
mapIII op (I x) (I y) = I (op x y)

productTypeTo :: NP I '[[Int], Ordering, Text] -> Foo
productTypeTo (I is :* I o :* I t :* Nil) = Foo is o t

What about efficiency?

hand-written 1

What about efficiency?

generics-sop

hand-written 1

5.95

Typed Template Haskell

▶ A typed subset of Template Haskell.
▶ Construct and use Haskell expressions at compilation time.

Template Meta-programming for Haskell

Tim Sheard

OGI School of Science & Engineering

Oregon Health & Science University

sheard@cse.ogi.edu

Simon Peyton Jones

Microsoft Research Ltd

simonpj@microsoft.com

Abstract

We propose a new extension to the purely functional programming

language Haskell that supports compile-time meta-programming.

The purpose of the system is to support the algorithmic construction

of programs at compile-time.

The ability to generate code at compile time allows the program-

mer to implement such features as polytypic programs, macro-like

expansion, user directed optimization (such as inlining), and the

generation of supporting data structures and functions from exist-

ing data structures and functions.

Our design is being implemented in the Glasgow Haskell Compiler,

ghc.

This version is very slightly modified from the Haskell Workshop

2002 publication; a couple of typographical errors are fixed in Fig-

ure 2.

Categories and Subject Descriptors

D.3.3 [Software]: Programming Languages

General Terms

Languages, Design

Keywords

Meta programming, templates

1 Introduction

“Compile-time program optimizations are similar to po-

etry: more are written than are actually published in

commercial compilers. Hard economic reality is that

many interesting optimizations have too narrow an au-

dience to justify their cost... An alternative is to al-

low programmers to define their own compile-time op-

timizations. This has already happened accidentally for

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute

to lists, requires prior specific permission and/or a fee.

Haskell Workshop October 3, 2002, Pittsburgh; reproduced here with permission

Copyright 2002 ACM 1-58113-415-0/01/0009 ...$5.00

C++, albeit imperfectly... [It is] obvious to functional

programmers what the committee did not realize until

later: [C++] templates are a functional language evalu-

ated at compile time...” [12].

Robinson’s provocative paper identifies C++ templates as a ma-

jor, albeit accidental, success of the C++ language design. De-

spite the extremely baroque nature of template meta-programming,

templates are used in fascinating ways that extend beyond the

wildest dreams of the language designers [1]. Perhaps surprisingly,

in view of the fact that templates are functional programs, func-

tional programmers have been slow to capitalize on C++’s success;

while there has been a recent flurry of work on run-time meta-

programming, much less has been done on compile-time meta-

programming. The Scheme community is a notable exception, as

we discuss in Section 10.

In this paper, therefore, we present the design of a compile-time

meta-programming extension of Haskell, a strongly-typed, purely-

functional language. The purpose of the extension is to allow pro-

grammers to compute some parts of their program rather than write

them, and to do so seamlessly and conveniently. The extension can

be viewed both as a template system for Haskell (à la C++), as well

as a type-safe macro system. We make the following new contribu-

tions:

• We describe how a quasi-quotation mechanism for a language

with binders can be precisely described by a translation into

a monadic computation. This allows the use of a gensym-

like operator even in a purely functional language like Haskell

(Sections 6.1 and 9).

• A staged type-checking algorithm co-routines between type

checking and compile-time computations. This staging is use-

ful, because it supports code generators, which if written as

ordinary programs, would need to be given dependent types.

The language is therefore expressive and simple (no depen-

dent types), but still secure, because all run-time computations

(either hand-written or computed) are always type-checked

before they are executed (Section 7).

• Reification of programmer-written components is supported,

so that computed parts of the program can analyze the struc-

ture of user-written parts. This is particularly useful for build-

ing “boilerplate” code derived from data type declarations

(Sections 5 and 8.1).

In addition to these original contributions, we have synthesized pre-

vious work into a coherent system that provides new capabilities.

These include

• The representation of code by an ordinary algebraic datatype

makes it possible use Haskell’s existing mechanisms (case

Haskel
l 2002

Typed Template Haskell

▶ A typed subset of Template Haskell.
▶ Construct and use Haskell expressions at compilation time.

Template Meta-programming for Haskell

Tim Sheard

OGI School of Science & Engineering

Oregon Health & Science University

sheard@cse.ogi.edu

Simon Peyton Jones

Microsoft Research Ltd

simonpj@microsoft.com

Abstract

We propose a new extension to the purely functional programming

language Haskell that supports compile-time meta-programming.

The purpose of the system is to support the algorithmic construction

of programs at compile-time.

The ability to generate code at compile time allows the program-

mer to implement such features as polytypic programs, macro-like

expansion, user directed optimization (such as inlining), and the

generation of supporting data structures and functions from exist-

ing data structures and functions.

Our design is being implemented in the Glasgow Haskell Compiler,

ghc.

This version is very slightly modified from the Haskell Workshop

2002 publication; a couple of typographical errors are fixed in Fig-

ure 2.

Categories and Subject Descriptors

D.3.3 [Software]: Programming Languages

General Terms

Languages, Design

Keywords

Meta programming, templates

1 Introduction

“Compile-time program optimizations are similar to po-

etry: more are written than are actually published in

commercial compilers. Hard economic reality is that

many interesting optimizations have too narrow an au-

dience to justify their cost... An alternative is to al-

low programmers to define their own compile-time op-

timizations. This has already happened accidentally for

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute

to lists, requires prior specific permission and/or a fee.

Haskell Workshop October 3, 2002, Pittsburgh; reproduced here with permission

Copyright 2002 ACM 1-58113-415-0/01/0009 ...$5.00

C++, albeit imperfectly... [It is] obvious to functional

programmers what the committee did not realize until

later: [C++] templates are a functional language evalu-

ated at compile time...” [12].

Robinson’s provocative paper identifies C++ templates as a ma-

jor, albeit accidental, success of the C++ language design. De-

spite the extremely baroque nature of template meta-programming,

templates are used in fascinating ways that extend beyond the

wildest dreams of the language designers [1]. Perhaps surprisingly,

in view of the fact that templates are functional programs, func-

tional programmers have been slow to capitalize on C++’s success;

while there has been a recent flurry of work on run-time meta-

programming, much less has been done on compile-time meta-

programming. The Scheme community is a notable exception, as

we discuss in Section 10.

In this paper, therefore, we present the design of a compile-time

meta-programming extension of Haskell, a strongly-typed, purely-

functional language. The purpose of the extension is to allow pro-

grammers to compute some parts of their program rather than write

them, and to do so seamlessly and conveniently. The extension can

be viewed both as a template system for Haskell (à la C++), as well

as a type-safe macro system. We make the following new contribu-

tions:

• We describe how a quasi-quotation mechanism for a language

with binders can be precisely described by a translation into

a monadic computation. This allows the use of a gensym-

like operator even in a purely functional language like Haskell

(Sections 6.1 and 9).

• A staged type-checking algorithm co-routines between type

checking and compile-time computations. This staging is use-

ful, because it supports code generators, which if written as

ordinary programs, would need to be given dependent types.

The language is therefore expressive and simple (no depen-

dent types), but still secure, because all run-time computations

(either hand-written or computed) are always type-checked

before they are executed (Section 7).

• Reification of programmer-written components is supported,

so that computed parts of the program can analyze the struc-

ture of user-written parts. This is particularly useful for build-

ing “boilerplate” code derived from data type declarations

(Sections 5 and 8.1).

In addition to these original contributions, we have synthesized pre-

vious work into a coherent system that provides new capabilities.

These include

• The representation of code by an ordinary algebraic datatype

makes it possible use Haskell’s existing mechanisms (case

Haskel
l 2002

MetaML: Multi-Stage Programming with Explicit AnnotationsWalid Taha & Tim SheardOregon Graduate Institute of Science and Technologyfwalidt,sheardg@cse.ogi.edu �AbstractWe introduce MetaML, a practically-motivated, statically-typed multi-stage programming language. MetaML allowsthe programmer to construct, combine, and execute codefragments in a type-safe manner. Code fragments can con-tain free variables, but we ensure that the language obeysthe static-scoping principle. MetaML performs type-checkingfor all stages once and for all before the execution of the �rststage. From a software engineering point of view, this meansthat our programs never generate untypable programs.A thesis of this paper is that multi-stage languages areuseful as programming languages in their own right, thatthey supply a sound basis for high-level program genera-tion technology, and that they should support features thatmake it possible for programmers to write staged computa-tions without signi�cantly changing their normal program-ming style. To illustrate this we provide a simple three stageexample, and an extended two-stage example elaborating anumber of practical issues.The design of MetaML was based on two main princi-ples that we identi�ed as fundamental for high-level programgeneration, namely, cross-stage persistence and cross-stagesafety. We present these principles, explain the technicalproblems they give rise to, and how we deal with these prob-lems in our implementation.1 IntroductionHigh-level program generators can increase the e�ciency,productivity, reliability, and quality of software systems [27,23, 24]. Despite the numerous examples of program genera-tors, almost all these systems deal with the construction ofprogram fragments using ad-hoc techniques.Our thesis is that a well-designed multi-stage program-ming language supplies a sound basis for high-level programgeneration technology. Our goal was to design a languagethat allows the user to construct, combine, and evaluateprograms at a higher level of abstraction than the classic\programs-as-strings" level. Such a language should alsomake the formal veri�cation of generated-program proper-ties easier.�The research reported in this paper was supported by the USAFAir Materiel Command, contract # F19628-93-C-0069, and NSFGrant IRI-9625462. An earlier version of this paper appeared in TheProceedings of the ACM SIGPLAN Symposium on Partial Evaluationand Semantics Based Program Manipulation. pp 203-217. Amster-dam, The Netherlands, June 12-13, 1997.

1.1 Multi-Stage Programs and LanguagesThe concept of a stage arises naturally in a wide varietyof situations. For a compiled language, the execution of aprogram involves two distinct stages: compile-time, and run-time. Three distinct stages appear in the context of programgeneration: generation, compilation, and execution. For ex-ample, the Yacc parser generator �rst reads a grammar andgenerates C code; second, this program is compiled; third,the user runs the object code.A multi-stage program is one that involves the gener-ation, compilation, and execution of code, all inside thesame process. Multi-stage languages express multi-stageprograms. Multi-stage programming is important becauseit addresses the need for general purpose solutions which donot pay run-time interpretive overheads. This is the purposeof program staging and it can be highly e�ective as demon-strated in many studies [3, 18, 17, 9, 13, 26, 38, 51]. Re-cently, multi-stage languages have also been proposed as in-termediate representations for partial evaluation [14, 10, 11],and a formal foundation for run-time code generation [7].However, there has generally been little support for writ-ingmulti-stage programs directly in high level programminglanguages such as SML or Haskell.1.2 MetaMLMetaML is an SML-like language with special constructsfor multi-stage programming. MetaML is tightly integratedin that programs are constructed, combined, compiled, andexecuted all under a single paradigm. Programs are rep-resented as abstract syntax trees in a manner that avoidsgoing through string representations. This makes verifyingsemantic properties of multi-stage programs possible. Thekey features of MetaML are as follows:� Four distinct staging annotations, which we believe area good basis for general-purpose multi-stage program-ming.� A multi-stage program is type-checked once and forall before it begins executing, ensuring the safety ofall computations.� Cross-stage persistence: A variable bound in a partic-ular stage, will be available in futures stages.� Cross-stage safety: An input �rst available in a par-ticular stage cannot be used at an earlier stage.� Static scoping of variables in code fragments.

PEPM 1997

Typed Template Haskell

▶ A typed subset of Template Haskell.
▶ Construct and use Haskell expressions at compilation time.

Template Meta-programming for Haskell

Tim Sheard

OGI School of Science & Engineering

Oregon Health & Science University

sheard@cse.ogi.edu

Simon Peyton Jones

Microsoft Research Ltd

simonpj@microsoft.com

Abstract

We propose a new extension to the purely functional programming

language Haskell that supports compile-time meta-programming.

The purpose of the system is to support the algorithmic construction

of programs at compile-time.

The ability to generate code at compile time allows the program-

mer to implement such features as polytypic programs, macro-like

expansion, user directed optimization (such as inlining), and the

generation of supporting data structures and functions from exist-

ing data structures and functions.

Our design is being implemented in the Glasgow Haskell Compiler,

ghc.

This version is very slightly modified from the Haskell Workshop

2002 publication; a couple of typographical errors are fixed in Fig-

ure 2.

Categories and Subject Descriptors

D.3.3 [Software]: Programming Languages

General Terms

Languages, Design

Keywords

Meta programming, templates

1 Introduction

“Compile-time program optimizations are similar to po-

etry: more are written than are actually published in

commercial compilers. Hard economic reality is that

many interesting optimizations have too narrow an au-

dience to justify their cost... An alternative is to al-

low programmers to define their own compile-time op-

timizations. This has already happened accidentally for

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute

to lists, requires prior specific permission and/or a fee.

Haskell Workshop October 3, 2002, Pittsburgh; reproduced here with permission

Copyright 2002 ACM 1-58113-415-0/01/0009 ...$5.00

C++, albeit imperfectly... [It is] obvious to functional

programmers what the committee did not realize until

later: [C++] templates are a functional language evalu-

ated at compile time...” [12].

Robinson’s provocative paper identifies C++ templates as a ma-

jor, albeit accidental, success of the C++ language design. De-

spite the extremely baroque nature of template meta-programming,

templates are used in fascinating ways that extend beyond the

wildest dreams of the language designers [1]. Perhaps surprisingly,

in view of the fact that templates are functional programs, func-

tional programmers have been slow to capitalize on C++’s success;

while there has been a recent flurry of work on run-time meta-

programming, much less has been done on compile-time meta-

programming. The Scheme community is a notable exception, as

we discuss in Section 10.

In this paper, therefore, we present the design of a compile-time

meta-programming extension of Haskell, a strongly-typed, purely-

functional language. The purpose of the extension is to allow pro-

grammers to compute some parts of their program rather than write

them, and to do so seamlessly and conveniently. The extension can

be viewed both as a template system for Haskell (à la C++), as well

as a type-safe macro system. We make the following new contribu-

tions:

• We describe how a quasi-quotation mechanism for a language

with binders can be precisely described by a translation into

a monadic computation. This allows the use of a gensym-

like operator even in a purely functional language like Haskell

(Sections 6.1 and 9).

• A staged type-checking algorithm co-routines between type

checking and compile-time computations. This staging is use-

ful, because it supports code generators, which if written as

ordinary programs, would need to be given dependent types.

The language is therefore expressive and simple (no depen-

dent types), but still secure, because all run-time computations

(either hand-written or computed) are always type-checked

before they are executed (Section 7).

• Reification of programmer-written components is supported,

so that computed parts of the program can analyze the struc-

ture of user-written parts. This is particularly useful for build-

ing “boilerplate” code derived from data type declarations

(Sections 5 and 8.1).

In addition to these original contributions, we have synthesized pre-

vious work into a coherent system that provides new capabilities.

These include

• The representation of code by an ordinary algebraic datatype

makes it possible use Haskell’s existing mechanisms (case

Haskel
l 2002

MetaML: Multi-Stage Programming with Explicit AnnotationsWalid Taha & Tim SheardOregon Graduate Institute of Science and Technologyfwalidt,sheardg@cse.ogi.edu �AbstractWe introduce MetaML, a practically-motivated, statically-typed multi-stage programming language. MetaML allowsthe programmer to construct, combine, and execute codefragments in a type-safe manner. Code fragments can con-tain free variables, but we ensure that the language obeysthe static-scoping principle. MetaML performs type-checkingfor all stages once and for all before the execution of the �rststage. From a software engineering point of view, this meansthat our programs never generate untypable programs.A thesis of this paper is that multi-stage languages areuseful as programming languages in their own right, thatthey supply a sound basis for high-level program genera-tion technology, and that they should support features thatmake it possible for programmers to write staged computa-tions without signi�cantly changing their normal program-ming style. To illustrate this we provide a simple three stageexample, and an extended two-stage example elaborating anumber of practical issues.The design of MetaML was based on two main princi-ples that we identi�ed as fundamental for high-level programgeneration, namely, cross-stage persistence and cross-stagesafety. We present these principles, explain the technicalproblems they give rise to, and how we deal with these prob-lems in our implementation.1 IntroductionHigh-level program generators can increase the e�ciency,productivity, reliability, and quality of software systems [27,23, 24]. Despite the numerous examples of program genera-tors, almost all these systems deal with the construction ofprogram fragments using ad-hoc techniques.Our thesis is that a well-designed multi-stage program-ming language supplies a sound basis for high-level programgeneration technology. Our goal was to design a languagethat allows the user to construct, combine, and evaluateprograms at a higher level of abstraction than the classic\programs-as-strings" level. Such a language should alsomake the formal veri�cation of generated-program proper-ties easier.�The research reported in this paper was supported by the USAFAir Materiel Command, contract # F19628-93-C-0069, and NSFGrant IRI-9625462. An earlier version of this paper appeared in TheProceedings of the ACM SIGPLAN Symposium on Partial Evaluationand Semantics Based Program Manipulation. pp 203-217. Amster-dam, The Netherlands, June 12-13, 1997.

1.1 Multi-Stage Programs and LanguagesThe concept of a stage arises naturally in a wide varietyof situations. For a compiled language, the execution of aprogram involves two distinct stages: compile-time, and run-time. Three distinct stages appear in the context of programgeneration: generation, compilation, and execution. For ex-ample, the Yacc parser generator �rst reads a grammar andgenerates C code; second, this program is compiled; third,the user runs the object code.A multi-stage program is one that involves the gener-ation, compilation, and execution of code, all inside thesame process. Multi-stage languages express multi-stageprograms. Multi-stage programming is important becauseit addresses the need for general purpose solutions which donot pay run-time interpretive overheads. This is the purposeof program staging and it can be highly e�ective as demon-strated in many studies [3, 18, 17, 9, 13, 26, 38, 51]. Re-cently, multi-stage languages have also been proposed as in-termediate representations for partial evaluation [14, 10, 11],and a formal foundation for run-time code generation [7].However, there has generally been little support for writ-ingmulti-stage programs directly in high level programminglanguages such as SML or Haskell.1.2 MetaMLMetaML is an SML-like language with special constructsfor multi-stage programming. MetaML is tightly integratedin that programs are constructed, combined, compiled, andexecuted all under a single paradigm. Programs are rep-resented as abstract syntax trees in a manner that avoidsgoing through string representations. This makes verifyingsemantic properties of multi-stage programs possible. Thekey features of MetaML are as follows:� Four distinct staging annotations, which we believe area good basis for general-purpose multi-stage program-ming.� A multi-stage program is type-checked once and forall before it begins executing, ensuring the safety ofall computations.� Cross-stage persistence: A variable bound in a partic-ular stage, will be available in futures stages.� Cross-stage safety: An input �rst available in a par-ticular stage cannot be used at an earlier stage.� Static scoping of variables in code fragments.

PEPM 1997

The Internet, 2013

Staging constructs

Quotes
e :: t

[||e||] :: Code t

Prevent reduction, build an AST.

Splices
e :: Code t
$$e :: t

Re-enable reduction, insert into an AST.

Top-level splices insert into the current module.

Splices and quotes cancel each other out: $$([||e||]) ⇝ e .

Staging constructs

Quotes
e :: t

[||e||] :: Code t

Prevent reduction, build an AST. type Code a = Q (TExp a)

Splices
e :: Code t
$$e :: t

Re-enable reduction, insert into an AST.

Top-level splices insert into the current module.

Splices and quotes cancel each other out: $$([||e||]) ⇝ e .

Staging constructs

Quotes
e :: t

[||e||] :: Code t

Prevent reduction, build an AST.

Splices
e :: Code t
$$e :: t

Re-enable reduction, insert into an AST.

Top-level splices insert into the current module.

Splices and quotes cancel each other out: $$([||e||]) ⇝ e .

Staging constructs

Quotes
e :: t

[||e||] :: Code t

Prevent reduction, build an AST.

Splices
e :: Code t
$$e :: t

Re-enable reduction, insert into an AST.

Top-level splices insert into the current module.

Splices and quotes cancel each other out: $$([||e||]) ⇝ e .

Staging constructs

Quotes
e :: t

[||e||] :: Code t

Prevent reduction, build an AST.

Splices
e :: Code t
$$e :: t

Re-enable reduction, insert into an AST.

Top-level splices insert into the current module.

Splices and quotes cancel each other out: $$([||e||]) ⇝ e .

Staged semigroup append

sgsappend :: (IsProductType a xs, All (Quoted Semigroup) xs) =>
Code a -> Code a -> Code a

sgsappend c1 c2 =
sproductTypeFrom c1 $ \ a1 -> sproductTypeFrom c2 $ \ a2 ->
sproductTypeTo (czipWithNP (Proxy @(Quoted Semigroup))
(mapCCC [||(<>)||]) a1 a2)

sappendFoo :: Foo -> Foo -> Foo
sappendFoo foo1 foo2 = $$(sgsappend [||foo1||] [||foo2||])

Staged semigroup append

sgsappend :: (IsProductType a xs, All (Quoted Semigroup) xs) =>
Code a -> Code a -> Code a

sgsappend c1 c2 =
sproductTypeFrom c1 $ \ a1 -> sproductTypeFrom c2 $ \ a2 ->
sproductTypeTo (czipWithNP (Proxy @(Quoted Semigroup))
(mapCCC [||(<>)||]) a1 a2)

sappendFoo :: Foo -> Foo -> Foo
sappendFoo foo1 foo2 = $$(sgsappend [||foo1||] [||foo2||])

Staged semigroup append

sappendFoo foo1 foo2

sproductTypeFrom :: Code Foo -> (NP C '[[Int], Ordering, Text] -> Code r) -> Code r
sproductTypeFrom foo k =

[||case $$foo of { Foo is o t ->
$$(k (C [||is||] :* C [||o||] :* C [||t||] :* Nil)) }

||]

newtype C a = C (Code a)

mapCCC :: Code (a -> b -> c) -> C a -> C b -> C c
mapCCC op (C x) (C y) = C [||$$op $$x $$y||]

sproductTypeTo :: NP C '[[Int], Ordering, Text] -> Code Foo
sproductTypeTo (C is :* C o :* C t :* Nil) = [||Foo $$is $$o $$t||]

Staged semigroup append

$$(sgsappend [||foo1||] [||foo2||])

sproductTypeFrom :: Code Foo -> (NP C '[[Int], Ordering, Text] -> Code r) -> Code r
sproductTypeFrom foo k =

[||case $$foo of { Foo is o t ->
$$(k (C [||is||] :* C [||o||] :* C [||t||] :* Nil)) }

||]

newtype C a = C (Code a)

mapCCC :: Code (a -> b -> c) -> C a -> C b -> C c
mapCCC op (C x) (C y) = C [||$$op $$x $$y||]

sproductTypeTo :: NP C '[[Int], Ordering, Text] -> Code Foo
sproductTypeTo (C is :* C o :* C t :* Nil) = [||Foo $$is $$o $$t||]

Staged semigroup append

$$(
sproductTypeFrom [||foo1||] $ \ a1 ->

sproductTypeFrom [||foo2||] $ \ a2 ->
sproductTypeTo
(czipWithNP (Proxy @(Quoted Semigroup))

(mapCCC [||(<>)||])
a1
a2)

)

sproductTypeFrom :: Code Foo -> (NP C '[[Int], Ordering, Text] -> Code r) -> Code r
sproductTypeFrom foo k =

[||case $$foo of { Foo is o t ->
$$(k (C [||is||] :* C [||o||] :* C [||t||] :* Nil)) }

||]

newtype C a = C (Code a)

mapCCC :: Code (a -> b -> c) -> C a -> C b -> C c
mapCCC op (C x) (C y) = C [||$$op $$x $$y||]

sproductTypeTo :: NP C '[[Int], Ordering, Text] -> Code Foo
sproductTypeTo (C is :* C o :* C t :* Nil) = [||Foo $$is $$o $$t||]

Staged semigroup append

$$(
sproductTypeFrom [||foo1||] $ \ a1 ->

sproductTypeFrom [||foo2||] $ \ a2 ->
sproductTypeTo
(czipWithNP (Proxy @(Quoted Semigroup))

(mapCCC [||(<>)||])
a1
a2)

)
sproductTypeFrom :: Code Foo -> (NP C '[[Int], Ordering, Text] -> Code r) -> Code r
sproductTypeFrom foo k =
[||case $$foo of { Foo is o t ->

$$(k (C [||is||] :* C [||o||] :* C [||t||] :* Nil)) }
||]

newtype C a = C (Code a)

mapCCC :: Code (a -> b -> c) -> C a -> C b -> C c
mapCCC op (C x) (C y) = C [||$$op $$x $$y||]

sproductTypeTo :: NP C '[[Int], Ordering, Text] -> Code Foo
sproductTypeTo (C is :* C o :* C t :* Nil) = [||Foo $$is $$o $$t||]

Staged semigroup append

$$(
sproductTypeFrom [||foo1||] $ \ a1 ->

sproductTypeFrom [||foo2||] $ \ a2 ->
sproductTypeTo
(czipWithNP (Proxy @(Quoted Semigroup))

(mapCCC [||(<>)||])
a1
a2)

)
sproductTypeFrom :: Code Foo -> (NP C '[[Int], Ordering, Text] -> Code r) -> Code r
sproductTypeFrom foo k =
[||case $$foo of { Foo is o t ->

$$(k (C [||is||] :* C [||o||] :* C [||t||] :* Nil)) }
||]

newtype C a = C (Code a)

mapCCC :: Code (a -> b -> c) -> C a -> C b -> C c
mapCCC op (C x) (C y) = C [||$$op $$x $$y||]

sproductTypeTo :: NP C '[[Int], Ordering, Text] -> Code Foo
sproductTypeTo (C is :* C o :* C t :* Nil) = [||Foo $$is $$o $$t||]

Staged semigroup append

$$(
[||case foo1 of { Foo is1 o1 t1 ->
$$(sproductTypeFrom [||foo2||] $ \ a2 ->

sproductTypeTo
(czipWithNP (Proxy @(Quoted Semigroup))

(mapCCC [||(<>)||])
(C [||is1||] :* C [||o1||] :* C [||t1||] :* Nil)
a2)) }

||]
)

sproductTypeFrom :: Code Foo -> (NP C '[[Int], Ordering, Text] -> Code r) -> Code r
sproductTypeFrom foo k =

[||case $$foo of { Foo is o t ->
$$(k (C [||is||] :* C [||o||] :* C [||t||] :* Nil)) }

||]

newtype C a = C (Code a)

mapCCC :: Code (a -> b -> c) -> C a -> C b -> C c
mapCCC op (C x) (C y) = C [||$$op $$x $$y||]

sproductTypeTo :: NP C '[[Int], Ordering, Text] -> Code Foo
sproductTypeTo (C is :* C o :* C t :* Nil) = [||Foo $$is $$o $$t||]

Staged semigroup append

$$(
[||case foo1 of { Foo is1 o1 t1 ->

case foo2 of { Foo is2 o2 t2 ->
$$(sproductTypeTo

(czipWithNP (Proxy @(Quoted Semigroup))
(mapCCC [||(<>)||])
(C [||is1||] :* C [||o1||] :* C [||t1||] :* Nil)
(C [||is2||] :* C [||o2||] :* C [||t2||] :* Nil))) } }

||]
)

sproductTypeFrom :: Code Foo -> (NP C '[[Int], Ordering, Text] -> Code r) -> Code r
sproductTypeFrom foo k =

[||case $$foo of { Foo is o t ->
$$(k (C [||is||] :* C [||o||] :* C [||t||] :* Nil)) }

||]

newtype C a = C (Code a)

mapCCC :: Code (a -> b -> c) -> C a -> C b -> C c
mapCCC op (C x) (C y) = C [||$$op $$x $$y||]

sproductTypeTo :: NP C '[[Int], Ordering, Text] -> Code Foo
sproductTypeTo (C is :* C o :* C t :* Nil) = [||Foo $$is $$o $$t||]

Staged semigroup append

$$(
[||case foo1 of { Foo is1 o1 t1 ->

case foo2 of { Foo is2 o2 t2 ->
$$(sproductTypeTo

(mapCCC [||(<>)||] (C [||is1||]) (C [||is2||])
:* mapCCC [||(<>)||] (C [||o1||]) (C [||o2||])
:* mapCCC [||(<>)||] (C [||t1||]) (C [||t2||])
:* Nil

)) } }
||]

)

sproductTypeFrom :: Code Foo -> (NP C '[[Int], Ordering, Text] -> Code r) -> Code r
sproductTypeFrom foo k =

[||case $$foo of { Foo is o t ->
$$(k (C [||is||] :* C [||o||] :* C [||t||] :* Nil)) }

||]

newtype C a = C (Code a)

mapCCC :: Code (a -> b -> c) -> C a -> C b -> C c
mapCCC op (C x) (C y) = C [||$$op $$x $$y||]

sproductTypeTo :: NP C '[[Int], Ordering, Text] -> Code Foo
sproductTypeTo (C is :* C o :* C t :* Nil) = [||Foo $$is $$o $$t||]

Staged semigroup append

$$(
[||case foo1 of { Foo is1 o1 t1 ->

case foo2 of { Foo is2 o2 t2 ->
$$(sproductTypeTo

(mapCCC [||(<>)||] (C [||is1||]) (C [||is2||])
:* mapCCC [||(<>)||] (C [||o1||]) (C [||o2||])
:* mapCCC [||(<>)||] (C [||t1||]) (C [||t2||])
:* Nil

)) } }
||]

)

sproductTypeFrom :: Code Foo -> (NP C '[[Int], Ordering, Text] -> Code r) -> Code r
sproductTypeFrom foo k =

[||case $$foo of { Foo is o t ->
$$(k (C [||is||] :* C [||o||] :* C [||t||] :* Nil)) }

||]

newtype C a = C (Code a)

mapCCC :: Code (a -> b -> c) -> C a -> C b -> C c
mapCCC op (C x) (C y) = C [||$$op $$x $$y||]

sproductTypeTo :: NP C '[[Int], Ordering, Text] -> Code Foo
sproductTypeTo (C is :* C o :* C t :* Nil) = [||Foo $$is $$o $$t||]

Staged semigroup append

$$(
[||case foo1 of { Foo is1 o1 t1 ->

case foo2 of { Foo is2 o2 t2 ->
$$(sproductTypeTo

(C [||(<>) is1 is2||]
:* C [||(<>) o1 o2||]
:* C [||(<>) t1 t2||]
:* Nil

)) } }
||]

)

sproductTypeFrom :: Code Foo -> (NP C '[[Int], Ordering, Text] -> Code r) -> Code r
sproductTypeFrom foo k =

[||case $$foo of { Foo is o t ->
$$(k (C [||is||] :* C [||o||] :* C [||t||] :* Nil)) }

||]

newtype C a = C (Code a)

mapCCC :: Code (a -> b -> c) -> C a -> C b -> C c
mapCCC op (C x) (C y) = C [||$$op $$x $$y||]

sproductTypeTo :: NP C '[[Int], Ordering, Text] -> Code Foo
sproductTypeTo (C is :* C o :* C t :* Nil) = [||Foo $$is $$o $$t||]

Staged semigroup append

$$(
[||case foo1 of { Foo is1 o1 t1 ->

case foo2 of { Foo is2 o2 t2 ->
$$(sproductTypeTo

(C [||(<>) is1 is2||]
:* C [||(<>) o1 o2||]
:* C [||(<>) t1 t2||]
:* Nil

)) } }
||]

)

sproductTypeFrom :: Code Foo -> (NP C '[[Int], Ordering, Text] -> Code r) -> Code r
sproductTypeFrom foo k =

[||case $$foo of { Foo is o t ->
$$(k (C [||is||] :* C [||o||] :* C [||t||] :* Nil)) }

||]

newtype C a = C (Code a)

mapCCC :: Code (a -> b -> c) -> C a -> C b -> C c
mapCCC op (C x) (C y) = C [||$$op $$x $$y||]

sproductTypeTo :: NP C '[[Int], Ordering, Text] -> Code Foo
sproductTypeTo (C is :* C o :* C t :* Nil) = [||Foo $$is $$o $$t||]

Staged semigroup append

$$(
[||case foo1 of { Foo is1 o1 t1 ->

case foo2 of { Foo is2 o2 t2 ->
Foo

((<>) is1 is2)
((<>) o1 o2)
((<>) t1 t2) } }

||]
)

sproductTypeFrom :: Code Foo -> (NP C '[[Int], Ordering, Text] -> Code r) -> Code r
sproductTypeFrom foo k =

[||case $$foo of { Foo is o t ->
$$(k (C [||is||] :* C [||o||] :* C [||t||] :* Nil)) }

||]

newtype C a = C (Code a)

mapCCC :: Code (a -> b -> c) -> C a -> C b -> C c
mapCCC op (C x) (C y) = C [||$$op $$x $$y||]

sproductTypeTo :: NP C '[[Int], Ordering, Text] -> Code Foo
sproductTypeTo (C is :* C o :* C t :* Nil) = [||Foo $$is $$o $$t||]

Staged semigroup append

case foo1 of { Foo is1 o1 t1 ->
case foo2 of { Foo is2 o2 t2 ->
Foo ((<>) is1 is2) ((<>) o1 o2) ((<>) t1 t2) } }

This is obviously equivalent to the hand-written version:

sappendFoo :: Foo -> Foo -> Foo
sappendFoo (Foo is1 o1 t1) (Foo is2 o2 t2) =

Foo (is1 <> is2) (o1 <> o2) (t1 <> t2)sproductTypeFrom :: Code Foo -> (NP C '[[Int], Ordering, Text] -> Code r) -> Code r
sproductTypeFrom foo k =

[||case $$foo of { Foo is o t ->
$$(k (C [||is||] :* C [||o||] :* C [||t||] :* Nil)) }

||]

newtype C a = C (Code a)

mapCCC :: Code (a -> b -> c) -> C a -> C b -> C c
mapCCC op (C x) (C y) = C [||$$op $$x $$y||]

sproductTypeTo :: NP C '[[Int], Ordering, Text] -> Code Foo
sproductTypeTo (C is :* C o :* C t :* Nil) = [||Foo $$is $$o $$t||]

Staged semigroup append

case foo1 of { Foo is1 o1 t1 ->
case foo2 of { Foo is2 o2 t2 ->
Foo ((<>) is1 is2) ((<>) o1 o2) ((<>) t1 t2) } }

This is obviously equivalent to the hand-written version:

sappendFoo :: Foo -> Foo -> Foo
sappendFoo (Foo is1 o1 t1) (Foo is2 o2 t2) =
Foo (is1 <> is2) (o1 <> o2) (t1 <> t2)

sproductTypeFrom :: Code Foo -> (NP C '[[Int], Ordering, Text] -> Code r) -> Code r
sproductTypeFrom foo k =

[||case $$foo of { Foo is o t ->
$$(k (C [||is||] :* C [||o||] :* C [||t||] :* Nil)) }

||]

newtype C a = C (Code a)

mapCCC :: Code (a -> b -> c) -> C a -> C b -> C c
mapCCC op (C x) (C y) = C [||$$op $$x $$y||]

sproductTypeTo :: NP C '[[Int], Ordering, Text] -> Code Foo
sproductTypeTo (C is :* C o :* C t :* Nil) = [||Foo $$is $$o $$t||]

What about efficiency?

generics-sop

hand-written 1

5.95

What about efficiency?

staged-sop

generics-sop

hand-written 1

5.95

1

staged-sop

▶ A variant of generics-sop.
▶ Can reuse the NS and NP types, because they are already

parameterized over a type constructor.
▶ Conversion functions use C rather than I as the type

constructor.
▶ Can reuse nearly all of the provided combinators for working with

sums and products.
▶ Requires proper handling of class constraints in Typed Template

Haskell.

Quotes and constraints

(<>) :: Semigroup a => a -> a -> a
[||(<>)||] :: ...

Quotes and constraints

(<>) :: Semigroup a => a -> a -> a
[||(<>)||] :: Semigroup a => Code (a -> a -> a)

GHC 8.10 ad-hoc answer, which is wrong.

Quotes and constraints

(<>) :: Semigroup a => a -> a -> a
[||(<>)||] :: Code (Semigroup a => a -> a -> a)

An option once impredicativity is available, but not first class (does
not allow to decouple the constraint from the quote).

Quotes and constraints

(<>) :: Semigroup a => a -> a -> a
[||(<>)||] :: Quoted Semigroup a => Code (a -> a -> a)

Our answer, which reflects that we need the constraint satisfied when
this fragment is spliced, not when it is constructed.

Implemented in a GHC branch; GHC proposal to follow.

Quotes and constraints

(<>) :: Semigroup a => a -> a -> a
[||(<>)||] :: Quoted Semigroup a => Code (a -> a -> a)

Our answer, which reflects that we need the constraint satisfied when
this fragment is spliced, not when it is constructed.

Implemented in a GHC branch; GHC proposal to follow.

In the paper

▶ More examples of staged generic functions.
▶ A more detailed explanation of Quoted .
▶ Related work.

Staged
Sums of Pro

ducts

Matthew Pickerin
g

Departm
ent of C

omputer Sc
ience

Univers
ity of Br

istol

United K
ingdom

matthew.
pickerin

g@bristol.
ac.uk

Andres
Löh

Well-Type
d LLP

andres@
well-ty

ped.com

Nicolas
Wu

Departm
ent of C

omputing

Imperial C
ollege L

ondon

United K
ingdom

n.wu@
imperial.a

c.uk

Abstrac
t

Generic
program

ming libra
ries hav

e histori
cally tra

ded effi-

ciency in
return fo

r conven
ience, an

d the gen
erics-so

p library

is no exc
eption. I

t offers a
simple, unif

orm, represe
ntation of

all datat
ypes pre

cisely as
a sum of produ

cts, making it
easy

to write ge
neric fu

nctions.
We show

how to finally make

generic
s-sop fast thro

ugh the use of stagi
ng with Typed

Template Ha
skell.

CCS Co
ncepts:

• Softw
are and

its engi
neering

→ Func-

tional l
anguag

es.

Keywor
ds: gene

ric prog
ramming, stag

ing

ACM Referen
ce Form

at:

Matthew Pickerin
g, Andre

s Löh, an
d Nicola

sWu. 2020. S
taged Su

ms

of Produ
cts. In Proceed

ings of t
he 13th

ACM SIGPLA
N Internat

ional

Haskell
Symposium

(Haskel
l ’20), A

ugust 2
7, 2020,

Virtual
Event,

USA. AC
M, New York, NY

, USA, 1
4 pages.

https://
doi.org

/10.114
5/

3406088
.340902

1

1 Introdu
ction

The gen
erics-so

p library [
de Vries

and Löh
2014] or

ganises

datatype
s into a

uniform
and stru

ctured w
ay: the c

hoice of

a constr
uctor is

represen
ted as an

n-ary sum type, an
d each

choice c
ontains

an n-ary product
represen

ting the
construc

-

tor argu
ments. As

with other ge
nerics li

braries,
the repr

e-

sentatio
n is used

to define f
unction

s that w
ork on a large

number of d
atatypes

by exploitin
g the unif

orm structur
e.

Unfortu
nately, l

ike all it
s generi

c library
siblings,

the perf
or-

mance of
generate

d code s
uffers un

less measures
are take

n

to minimize the a
bstractio

n overhe
ad. This

paper sh
ows how

we can remove the
abstract

ion overhea
d using

staging.

Conside
r a prod

uct type
such as

data Fo
o = Foo [In

t] Orde
ring Te

xt

Permission to make digi
tal or ha

rd copies o
f all or p

art of th
is work

for

persona
l or clas

sroom use is grant
ed without

fee provide
d that cop

ies

are not
made or d

istribute
d for profi

t or com
mercial ad

vantage
and that

copies b
ear this

notice a
nd the full

citation
on the first

page. Co
pyrights

for com
ponents

of this w
ork owned

by others t
han the author(s

) must

be hono
red. Abs

tracting
with credit is

permitted. To
copy otherwi

se, or

republis
h, to pos

t on serv
ers or to

redistrib
ute to lis

ts, requi
res prior

specific

permission and/or a
fee. Req

uest per
missions f

rom permissions@
acm.org.

Haskell
’20, Aug

ust 27, 2
020, Vir

tual Eve
nt, USA

© 2020 Co
pyright

held by
the own

er/autho
r(s). Pub

lication
rights li

censed

to ACM
.

ACM ISBN 978-1-45
03-8050-

8/20/08.
. . $15.00

https://
doi.org

/10.114
5/34060

88.3409
021

We can provide
a Semigroup

instance
for such

a type, r
elying

on the exist
ing Semigroup

instance
s for its

components
. The

semigroup operatio
n for Foo c

an be defin
ed as

sappen
dFoo ::

Foo→ Foo→ Foo

sappen
dFoo (Fo

o is1 o1
t1) (Foo

is2 o2 t2
) =

Foo (is1 ⋄ is2
) (o1 ⋄ o2

) (t1 ⋄ t2
)

This is a
typical g

eneric p
rogramming pattern:

we match

on the sole
construc

tor of a
datatype

, apply t
he semigroup

append
operatio

n (⋄) poin
twise to

its components
, and ap

-

ply the
construc

tor agai
n. None

of this i
s specifi

c to Foo; it

all work
s whene

ver we h
ave a sin

gle-cons
tructor d

atatype

where al
l components

have the
necessar

y Semigroup
instance

s.

Using ge
nerics-s

op, we c
an therefor

e define

gsappe
nd :: (IsProd

uctTyp
e a xs,A

ll Semigroup
xs) ⇒ a→ a→ a

gsappe
nd a1 a2

= produc
tTypeTo

(czipWithNP (Proxy @
Semigroup) (

mapIII (⋄))

(product
TypeFr

om a1) (pro
ductTy

peFrom
a2))

which ca
ptures e

xactly th
e pattern

describe
d above.

The con
-

straints
state tha

t the typ
e a must be a

single-c
onstruc

tor

datatyp
e and all its components

must be an instance
of

Semigroup. T
he funct

ions prod
uctTyp

eFrom
and prod

uctTyp
eTo

match on and apply the sole constru
ctor of t

he datatyp
e,

respecti
vely. Th

e functio
n czipWithNP zip

s togeth
er the co

m-

ponents
pointwi

se, using
the (⋄) func

tion.

In order to
make a typ

e such as Foo sa
tisfy the

constrai
nts

of the gs
append

function
, it must be an

instance
of theGe

neric

class, i.e
., it must be r

epresen
table in

the sum
-of-prod

ucts

style of
generic

s-sop. A
ssuming such

an instance
exists, w

e

can then simply writ
e

sappen
d′Foo

:: Foo→
Foo→ Foo

sappen
d′Foo

= gsappe
nd

The function
gsappe

nd can be instanti
ated to any single-

construc
tor datat

ype that
is an instance

of Gener
ic. Defin

ing

function
s generi

cally makes cod
e substa

ntially m
ore conc

ise

and redu
ces the p

otential
for error

s. Furthe
rmore, ope

rations

expresse
d generi

cally are
more robu

st to cha
nge: for

exam-

ple, add
ing or removing a field from Foo doe

s not re
quire

any cha
nge to th

e code o
f sappen

d′Foo
.

Howeve
r, before

we start
using ge

neric pr
ogramming all

over the
place, w

e should
ask: Is s

append
′
Foo

equally
fast as

sappen
dFoo, or

do we in
cur an overhea

d for usi
ng the g

eneric

machinery
? A simple benc

hmark that
uses bot

h function
s

Haskel
l 2020

Conclusions

▶ We can finally write datatype-generic programs at a high level,
with type safety and reliable performance.

▶ The identified improvements to constraint handling in Typed
Template Haskell are independently useful.

▶ It is wonderful that we can reuse so much of the original
generics-sop library.

▶ Nevertheless, staging in this style is also applicable to other
generic programming approaches such as GHC.Generics and SYB.

Try the prototype:

https://github.com/well-typed/generics-sop/tree/staged-sop
(README has instructions on how to build a suitably patched GHC branch.)

https://github.com/well-typed/generics-sop/tree/staged-sop

