
XComprez
XComprez is a compressor for XML documents. It assumes the input document is valid according to a
given DTD. Since the DTD is known, it is possible to use knowledge about the DTD when compressing a
document. For example, consider the following document together with a suitable DTD:

<book lang="English">

<title> Dead famous </title>

<author> Ben Elton </author>

<date> 2001 </date>

<chapter> Nomination </chapter>

<chapter> Eviction </chapter>

<chapter> One Winner </chapter>

</book>

<!ELEMENT book (title,author,

date,(chapter)*)>

<!ELEMENT title (#PCDATA)>

<!ELEMENT author (#PCDATA)>

<!ELEMENT date (#PCDATA)>

<!ELEMENT chapter (#PCDATA)>

<!ATTLIST book lang (English || Dutch)

#REQUIRED>

If this document is stored as a string, 130 bytes are required for the markup (the tags).

From the DTD you can see that you only have to know how many chapters there are, and what the value
of the lang attribute is. This implies you can compress better by taking the DTD into account. For the
markup in the document only 1 byte is needed now.

Given a DTD, XComprez generates a compressor for documents of that DTD. XComprez uses a data
binding to Haskell, and uses Generic Haskell on the generated data to compress the data.

Preliminary results show that XComprez compresses better than XMill, the most advanced publicly avail-
able XML compressor.

Generic Equality
A generic program for equality can be written in Generic Haskell as follows. The programmer has to cover
a few simple cases: unit, base types (Int), binary sums, binary products.

equal〈Unit〉 Unit Unit = True
equal〈Int〉 i1 i2 = eqInt — builtin equality
equal〈a + b〉 (Inl a1) (Inl a2) = equal〈a〉 a1 a2
equal〈a + b〉 (Inr b1) (Inr b2) = equal〈b〉 b1 b2
equal〈a + b〉 = False
equal〈a × b〉 (a1 × b1) (a2 × b2) = equal〈a〉 a1 a2 ∧ equal〈b〉 b1 b2

The compiler generates code automatically that one would usually write by hand. Often, the generic
function even looks simpler than an instance on a specific datatype. The following example shows the
equality instance on the non-trivial nested datatype Bush:

data Bush a = Zero | Succ a (Bush (Bush a))
equalBush Zero Zero = True
equalBush equala (Succ a1 r1) (Succ a2 r2) = equala a1 a2 ∧ equalBush (equalBush equala) r1 r2
equalBush = False

Program Evolution

Software evolves. Types change. In a normal programming language, all the handwritten programs for
those type would need to change.

In a generic programming language, no change need be made – the compiler will regenerate the appro-
priate instances of generic functions.

The generic program remains the same, and thus: • managers are happier; • the generic programmer
can go home early; • productivity increases; • the environment is saved; • the world will be a happier
place!

Compiling with GH

The compiler plugs the cases of the generic func-
tions together, following the structure of a type,
replacing type application, abstraction and re-
cursion by their function application, lamdba
abstraction, and fixed point recursion. Special-
izing a generic function in this way constitutes a
model of the simply typed lambda calculus.

The specialization process is handled automat-
ically by the compiler and thus requires no
work from the programmer.

Generic Programming

Transform underlying “generic idea” into a program in
Generic Haskell.

Datatypes can semantically be seen as defined in terms of
sums (choice) and products (‘records’) as well as applica-
tion, abstraction and recursion and primitive types such
as integers.

Generic functions are written by supplying code to han-
dle each semantic component of a datatype (except appli-
cation, abstraction and recursion).

Types Generic Program

Programs

Tedious Programming

Software consists of many datatypes along with functions
to support their use.

In conventional programming languages, common func-
tions – map, equality, pretty-print, serialization – must be
written by hand for each datatype. This is tedious and
error prone – not to mention plain boring.

In some cases, the compiler can generate such functions
– e.g. serialization in Java – but only a fixed number of
functions are supported.

Generic Haskell is an extension to the Haskell programming language that supports generic programming.

Many problems have instances on a lot of types. Programs for such problems follow the structure of
types. These programs are called generic programs. Generic programs need only be written once and the
instance of the program on a particular type is generated by the compiler.

Generic Haskell — From Types to Programs
Dave Clarke, Johan Jeuring, Andres Löh and many others

