
Simply Easy!
An Implementation of a Dependently Typed Lambda Calculus

Andres Löh
University of Bonn

loeh@iai.uni-bonn.de

Conor McBride Wouter Swierstra
University of Nottingham

ctm@cs.nott.ac.uk wss@cs.nott.ac.uk

Abstract
We present an implementation in Haskell of a dependently-typed
lambda calculus that can be used as the core of a programming
language. We show that a dependently-typed lambda calculus is no
more difficult to implement than other typed lambda calculi. In fact,
our implementation is almost as easy as an implementation of the
simply typed lambda calculus, which we emphasize by discussing
the modifications necessary to go from one to the other. We explain
how to add data types and write simple programs in the core
language, and discuss the steps necessary to build a full-fledged
programming language on top of our simple core.

1. Introduction
Most Haskell programmers are hesitant to program with dependent
types. It is said that type checking becomes undecidable; the phase
distinction between type checking and evaluation is irretrievably
lost; the type checker will always loop; and that dependent types
are just really, really, hard.

The same Haskell programmers, however, are perfectly happy to
program with a ghastly hodgepodge of generalized algebraic data
types, multi-parameter type classes with functional dependencies,
impredicative higher-ranked types, and even data kinds. They will
go to great lengths to avoid dependent types.

This paper aims to dispel many misconceptions Haskell pro-
grammers may have about dependent types. We will present and
explain a dependently-typed lambda calculus λ5 that can serve as
the core of a dependently-typed programming language, much like
Haskell can be based on the polymorphic lambda calculus Fω. We
will not only spell out the type rules of λ5 in detail, but also pro-
vide an implementation in Haskell.

To set the scene, we examine the simply-typed lambda calcu-
lus (Section 2). We present both the mathematical specification
and Haskell implementation of the abstract syntax, evaluation, and
type checking. Taking the simply-typed lambda calculus as start-
ing point, we move on to a dependently typed lambda calculus
(Section 3). Inspired by Pierce’s incremental development of type
systems [21], we highlight the changes, both in the specification
and the implementation, necessary to shift to a dependently typed
lambda calculus. Perhaps surprisingly, the modifications necessary

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

Copyright c© 2007 ACM [to be supplied]. . . $5.00.

are comparatively small. The resulting implementation of λ5 is
less than 150 lines of Haskell code, and can be generated directly
from this paper’s sources.

The full power of dependent types can only show if we add
actual data types to the base calculus. Hence, we demonstrate in
Section 4 how to extend our language with natural numbers and
vectors. More data types can be added using the principles ex-
plained in this section. Using the added data types, we write a few
example programs that make use of dependent types, such as a vec-
tor append operation that keeps track of the length of the vectors.

Programming in λ5 directly is tedious due to the spartan nature
of the core calculus. In Section 5, we therefore sketch how to
proceed if we want to construct a real programming language on
top of our dependently-typed core. Many aspects of designing a
dependently-typed programming language in which one can write
large, complex, programs, are still subject of ongoing research.

While none of the type systems we implement are new, we be-
lieve that our paper can serve as a gentle introduction on how to
implement a dependently-typed system in Haskell. The λ5 calcu-
lus has the nature of an internal language: it is explicitly typed,
requires a lot of code that one would like to omit in real programs,
and it lacks a lot of syntactic sugar. However, the language being
explicit also has its merits: writing simple dependently-typed pro-
grams in it can be very instructive and reveal a lot about the be-
haviour of dependently-typed systems. We have therefore included
code in the paper sources that provides a small interpreter around
the type system and evaluator we describe, together with a few ex-
ample functions, to serve as a simple environment to play with and
perhaps extend. If you want more, we have included pointers in the
conclusions (Section 6) to more advanced programming environ-
ments that allow dependently-typed programming right now.

2. Simply Typed Lambda Calculus
Roughly speaking, Haskell’s type system can be divided into three
levels: expressions, types and kinds. Programmers write expres-
sions, and the type checker ensures they are well-typed. The type
language itself is extremely rich. For instance, data types, such as
lists, can abstract over the type of their elements. The type lan-
guage is so complex that the types themselves have types, called
kinds. The kind system itself is relatively simple: all types inhab-
ited by expressions have kind ∗; type constructors, such as lists,
have a ‘function kind’, in the same was as lambda expressions have
a ‘function type.’

With its three levels, Haskell is a rich version of the typed
lambda calculus called Fω, which also forms the basis of the core
language used in GHC. Compared to pure Fω, full Haskell is aug-
mented with lots of additional features, most notably the facility to
define your own data types and a cunning type inference algorithm.

In this section, we consider the simply-typed lambda calculus,
or λ→ for short. It has a much simpler structure than Fω as there

1 2007/6/22

e ⇓ v
e :: τ ⇓ v x ⇓ x

e1 ⇓ λx→ v1 e2 ⇓ v2
e1 e2 ⇓ v1[x 7→ v2]

e1 ⇓ n1 e2 ⇓ v2
e1 e2 ⇓ n1 v2

e ⇓ v
λx→ e ⇓ λx→ v

Figure 1. Evaluation in λ→

is no polymorphism or kind system. Every term is explicitly typed
and no type inference is performed. In a sense, λ→ is the smallest
imaginable statically typed functional language.

2.1 Abstract syntax
The type language of λ→ consists of just two constructs:

τ ::= α base type
| τ → τ ′ function type

There is a set of base types α; compound types τ → τ ′ correspond
to functions from τ to τ ′.

e ::= e :: τ annotated term1

| x variable
| e1 e2 application
| λx→ e lambda abstraction

There are four kinds of terms: terms with an explicit type annota-
tion; variables; applications; and lambda abstractions.

Terms can be evaluated to values:

v ::= n neutral term
| λx→ v lambda abstraction

n ::= x variable
| n v application

A value is either a neutral term, i.e., a variable applied to a (possibly
empty) sequence of values, or it is a lambda abstraction.

2.2 Evaluation
Evaluation rules are given in Figure 1. The notation e ⇓ v means
that e directly evaluates to v. The rules we present will evaluate a
term to its normal form. As a result, unlike Haskell, we will con-
tinue to evaluate under a lambda. Type annotations are ignored dur-
ing evaluation. Variables evaluate to themselves. The only interest-
ing case is application. In this case, it depends whether the left hand
side evaluates to a lambda abstraction or to a neutral term. In the
former case, we β-reduce. In the latter case, we add the additional
argument to the spine.

The evaluation rules given here are strict. In an application,
we always evaluate the argument. This is different from Haskell’s
non-strict semantics. However, the simply-typed lambda calculus
is strongly normalizing: evaluation terminates for any term, and the
resulting value is independent of the evaluation strategy.

Here are few example terms in λ→, and their evaluations. Let
us write id to denote the term λx → x, and const to denote the
term λx y → x, which we use in turn as syntactic sugar for
λx→ λy→ x. Then

(id :: α→ α) y ⇓ y

(const :: (β → β)→ α→ β → β) id y ⇓ id

2.3 Type System
Type rules are generally of the form 0 ` e :: t, indicating that a
term e is of type t in context 0. The context lists valid base types,

1 Type theorists use ‘:’ or ‘∈’ to denote the type inhabitation relation. In
Haskell, the symbol ‘:’ is used as the “cons” operator for lists, therefore the
designers of Haskell chose the non-standard ‘::’ for type annotations. In this
paper, we will stick as close as possible to Haskell’s syntax.

0 ::= ε empty context
| 0, α :: ∗ adding a type identifier
| 0, x :: τ adding a term identifier

valid(ε)

valid(0)

valid(0, α :: ∗)
valid(0) 0 ` τ :: ∗

valid(0, x :: τ)

0(α) = ∗

0 ` α :: ∗
0 ` τ :: ∗ 0 ` τ ′ :: ∗

0 ` τ → τ ′ :: ∗

Figure 2. Contexts and well-formed types in λ→

0 ` τ :: ∗ 0 ` e ::↓ τ

0 ` (e :: τ) ::↑ τ

0(x) = τ

0 ` x ::↑ τ

0 ` e1 ::↑ τ → τ ′ 0 ` e2 ::↓ τ

0 ` e1 e2 ::↑ τ ′

0 ` e ::↑ τ

0 ` e ::↓ τ

0, x :: τ ` e ::↓ τ ′

0 ` λx→ e ::↓ τ → τ ′

Figure 3. Type rules for λ→

and associates identifiers with type information. We write α :: ∗ to
indicate that α is a base type, and x :: t to indicate that x is a term
of type t. Every free variable in both terms and types must occur in
the context. For instance, if we want to declare const to be of type
(β → β)→ α→ β → β, we need our context to contain at least:

α :: ∗, β :: ∗, const :: (β → β)→ α→ β → β

Note α and β are introduced before they are used in the type of
const. These considerations motivate the definitions of contexts
and their validity given in Figure 2.

Multiple bindings for the same variable can occur in a context,
with the rightmost binding taking precedence. We write 0(z) to
denote the information associated with identifier z by context 0.

The last two rules in Figure 2 explain when a type is well-
formed, i.e., when all its free variables appear in the context. In
the rules for the well-formedness of types as well as in the type
rules that follow, we implicitly assume that all contexts are valid.

Note that λ→ is not polymorphic: a type identifier represents a
specific type, and cannot be instantiated.

Finally, we can give the (syntax-directed) type rules (Figure 3).
It turns our that for some expressions, we can infer a type, whereas
generally, we can only check an expression against a given type.
The arrow on the type rule indicates whether the type is an input
(::↓) or an output (::↑). For now, this is only a guideline, but the
distinction will become more significant in the implementation.

Let us first look at the inferable terms. We check annotated
terms against their type annotation, and then return the type. The
types of variables are looked up in the environment. For applica-
tions, we deal with the function first, which must be of a function
type. We can then check the argument against the function’s do-
main, and return the range as the result type.

The final two rules are for type checking. If we want to check
an inferable term against a type, then this type must be identical
to the one that is inferred for the term. A lambda abstraction can
only be checked against a function type. We check the body of the
abstraction in an extended context.

Here are type judgements – derivable using the above rules –
for our two running examples:

α :: ∗, y :: α ` (id :: α→α) y :: α

α :: ∗, y :: α, β :: ∗ ` (const :: (β→β)→α→β→β) id y :: β→β

2.4 Implementation
We now give an implementation of λ→ in Haskell. We provide
an evaluator for well-typed expressions, and routines to type-check

2 2007/6/22

λ→ terms. The implementation follows the formal description that
we have just introduced very closely.

We make use of two simple implementation tricks that help us
to focus of the essence of the algorithms.

De Bruijn indices In order to save us the work of implement-
ing α-conversion and α-equality – i.e., renaming of variables, pre-
venting name capture, etc. – we use De Bruijn indices: each oc-
currence of a bound variable is represented by a number indicat-
ing how many binders occur between the variable and where it is
bound.

Using this notation, we can for example write id as λ→ 0, and
const as λ→ λ→ 1. When using De Bruijn indices, the equality
check on types can be implemented as syntactic equality.

While bound variables are represented using natural numbers,
we still make use of strings for free variables. The data type of
terms has a constructor Var, taking an Int as argument, for a De
Bruijn index, and a constructor Par with a Name argument, for
free variables. Most names are strings, we will introduce the other
categories when we need them:

data Name
= Const String
| Bound Int
| Unquoted Int

deriving (Show, Eq)

Higher-order abstract syntax We make use of the Haskell func-
tion space to represent function values. With this representation,
we can implement function application using Haskell’s own func-
tion application, and we do not have to implement β-reduction.

There is a small price to pay, namely that Haskell functions
cannot be inspected, i.e., we cannot print them or compare them
for equality. We can, however, use our knowledge about the syntax
of values to quote values and transform the back into types. We will
return to the quote function, after we have to defined the evaluator
and type checker.

Abstract syntax The type rules in Figure 3 reveal that we can infer
the types for annotated terms, variables and application constructs,
whereas we can only check the type for lambda abstractions. We
therefore make a syntactic distinction between inferable (Term↑)
and checkable (Term↓) terms.

data Term↑
= Ann Term↓ Type
| Var Int
| Par Name
| Term↑ :@: Term↓

deriving (Show, Eq)

data Term↓
= Inf Term↑
| Lam Term↓

deriving (Show, Eq)

Annotated terms are represented using Ann. As explained above,
we use integers to represent bound variables (Var), and names for
free variables (Par). The infix constructor :@: denotes application.

Inferable terms are embedded in the checkable terms via the
constructor Inf , and lambda abstractions (which do not introduce
an explicit variable due to our use of De Bruijn indices) are written
using Lam.

Types consist only of type identifiers (TPar) or function arrows
(Fun). We reuse the Name data type for type identifiers. In λ→,
there are no bound names on the type level, so there is no need for
a TVar constructor.

data Type
= TPar Name
| Fun Type Type

deriving (Show, Eq)

type Env = [Value]

eval↑ :: Term↑ → Env→ Value

eval↑ (Ann e) d = eval↓ e d
eval↑ (Par x) d = vpar x
eval↑ (Var i) d = d !! i
eval↑ (e1 :@: e2) d = vapp (eval↑ e1 d) (eval↓ e2 d)

vapp :: Value→ Value→ Value
vapp (VLam f) v = f v
vapp (VNeutral n) v = VNeutral (NApp n v)

eval↓ :: Term↓ → Env→ Value

eval↓ (Inf i) d = eval↑ i d
eval↓ (Lam e) d = VLam (λx→ eval↓ e (x : d))

Figure 4. Implementation of an evaluator for λ→

Values are lambda abstractions (VLam) or neutral terms (VNeutral).

data Value
= VLam (Value→ Value)
| VNeutral Neutral

As described in the discussion on higher-order abstract syntax, we
represent function values as Haskell functions of type Value →
Value. For instance, the term const – if evaluated – results in the
value VLam (λx→ VLam (λy→ x)).

The data type for neutral terms matches the formal abstract
syntax exactly. A neutral term is either a variable (NPar), or an
application of a neutral term to a value (NApp).

data Neutral
= NPar Name
| NApp Neutral Value

We introduce a function vpar that creates the value corresponding
to a free variable:

vpar :: Name→ Value
vpar n = VNeutral (NPar n)

Evaluation The code for evaluation is given in Figure 4. The
functions eval↑ and eval↓ implement the big-step evaluation rules
for inferable and checkable terms respectively. Comparing the code
to the rules in Figure 1 reveals that the implementation is mostly
straightforward.

Substitution is handled by passing around an environment of
values. Since bound variables are represented as integers, the envi-
ronment is just a list of values where the i-th position corresponds
to the value of variable i. We add a new element to the environment
whenever evaluating underneath a binder, and lookup the correct el-
ement (using Haskell’s list lookup operator !!) when we encounter
a bound variable.

For lambda functions (Lam), we introduce a Haskell function
and add the bound variable x to the environment while evaluating
the body.

Contexts Before we can tackle the implementation of type check-
ing, we have to define contexts. Contexts are implemented as (re-
versed) lists associating names with either ∗ (HasKind Star) or a
type (HasType t):

data Kind = Star
deriving (Show)

data Info = HasKind Kind | HasType Type
deriving (Show)

type Context = [(Name, Info)]

Extending a context is thus achieved by the list “cons” operation;
looking up a name in a context is performed by the Haskell standard
list function lookup.

3 2007/6/22

kind↓ :: Context→ Type→ Kind→ Result ()

kind↓ 0 (TPar x) Star
= case lookup x 0 of

Just (HasKind Star)→ return ()

Nothing → throwError "unknown identifier"

kind↓ 0 (Fun κ κ ′) Star
= do kind↓ 0 κ Star

kind↓ 0 κ ′ Star

type↑0 :: Context→ Term↑ → Result Type

type↑0 = type↑ 0

type↑ :: Int→ Context→ Term↑ → Result Type

type↑ i 0 (Ann e τ)

= do kind↓ 0 τ Star
type↓ i 0 e τ

return τ

type↑ i 0 (Par x)
= case lookup x 0 of

Just (HasType τ)→ return τ

Nothing → throwError "unknown identifier"

type↑ i 0 (e1 :@: e2)

= do σ ← type↑ i 0 e1
case σ of

Fun τ τ ′ → do type↓ i 0 e2 τ

return τ ′

→ throwError "illegal application"

type↓ :: Int→ Context→ Term↓ → Type→ Result ()

type↓ i 0 (Inf e) τ

= do τ ′ ← type↑ i 0 e
unless (τ = = τ ′) (throwError "type mismatch")

type↓ i 0 (Lam e) (Fun τ τ ′)

= type↓ (i+ 1) ((Bound i, HasType τ) : 0)

(subst↓ 0 (Par (Bound i)) e) τ ′

type↓ i 0

= throwError "type mismatch"

Figure 5. Implementation of a type checker for λ→

Type checking We now implement the rules in Figure 3. The code
is shown in Figure 5. The type checking algorithm can fail, and
to do so gracefully, it returns a result in the Result monad. For
simplicity, we choose a standard error monad in this presentation:

type Result α = Either String α

We use the function throwError :: String→ Result α to report an
error.

The function for inferable terms type↑ returns a type, whereas
the the function for checkable terms type↓ takes a type as input
and returns ().The well-formedness of types is checked using the
function kind↓. Each case of the definitions corresponds directly to
one of the rules.

The type-checking functions are parameterized by an integer
argument indicating the number of binders we have encountered.
On the initial call, this argument is 0, therefore we provide type↑0
as a wrapper.

We use this integer to simulate the type rules in the handling
of bound variables. In the type rule for lambda abstraction, we
add the bound variable to the context while checking the body.
We do the same in the implementation. The counter i indicates the
number of binders we have passed, so Bound i is a fresh name that
we can associate with the bound variable. We then add Bound i
to the context 0 when checking the body. However, because we
are turning a bound into a free variable, we have to perform the

subst↑ :: Int→ Term↑ → Term↑ → Term↑
subst↑ i r (Ann e τ) = Ann (subst↓ i r e) τ

subst↑ i r (Var j) = if i = = j then r else Var j
subst↑ i r (Par y) = Par y
subst↑ i r (e1 :@: e2) = subst↑ i r e1 :@: subst↓ i r e2

subst↓ :: Int→ Term↑ → Term↓ → Term↓
subst↓ i r (Inf e) = Inf (subst↑ i r e)
subst↓ i r (Lam e) = Lam (subst↓ (i+ 1) r e)

Figure 6. Implementation of substitution for λ→

quote0 :: Value→ Term↓
quote0 = quote 0

quote :: Int→ Value→ Term↓
quote i (VLam f) = Lam (quote (i+ 1) (f (vpar (Unquoted i))))
quote i (VNeutral n) = Inf (neutralQuote i n)

neutralQuote :: Int→ Neutral→ Term↑
neutralQuote i (NPar x) = varpar i x
neutralQuote i (NApp n v) = neutralQuote i n :@: quote i v

Figure 7. Quotation in λ→

corresponding substitution on the body. The type checker will never
encounter a bound variable; correspondingly the function type↑ has
no case for Var.

Note that the type equality check that is performed when check-
ing an inferable term is implemented by a straightforward syntactic
equality on the data type Type. Our type checker does not perform
unification.

The code for substitution is shown in Figure 6, and again com-
prises a function for checkable (subst↓) and one for inferable terms
(subst↑). The integer argument indicates which variable is to be
substituted. The interesting cases are the one for Var where we
check if the variable encountered is the one to be substituted or
not, and the case for Lam, where we increase i to reflect that the
variable to substitute is referenced by a higher number underneath
the binder.

Our implementation of the simply-typed lambda calculus is now
almost complete. A small problem that remains is the evaluator
returns a Value, and we currently have no way to print elements
of type Value.

Quotation As we mentioned earlier, the use of higher-order ab-
stract syntax requires us to define a quote function that takes a
Value back to a term. As the VLam constructor of the Value data
type takes a function as argument, we cannot simply derive Show
and Eq as we did for the other types. Therefore, as soon as we want
to get back at the internal structure of a value, for instance to dis-
play results of evaluation, we need the function quote. The code is
given in Figure 7.

The function quote takes an integer argument that counts the
number of binders we have traversed. Initially, quote is always
called with 0, so we wrap this call in the function quote0.

If the value is a lambda abstraction, we generate a fresh variable
Unquoted i and apply the Haskell function f to this fresh variable.
The value resulting from the function application is then quoted at
level i+1. We use the constructor Unquoted that takes an argument
of type Int here to ensure that the newly created names do not clash
with other names in the value.

If the value is a neutral term (hence an application of a free
variable to other values), the function neutralQuote is used to quote
the arguments. The varpar function checks if the variable occurring

4 2007/6/22

at the head of the application is an Unquoted bound variable or a
constant:

varpar :: Int→ Name→ Term↑
varpar i (Unquoted k) = Var (i− k − 1)
varpar i x = Par x

Quotation of functions is best understood by example. The value
corresponding to the term const is VLam (λx→ VLam (λy→ x)).
Applying quote0 yields the following:

quote 0 (VLam (λx→ VLam (λy→ x)))
= Lam (quote 1 (VLam (λy→ vpar (Unquoted 0))))
= Lam (Lam (quote 2 (vpar (Unquoted 0))))
= Lam (Lam (neutralQuote 2 (NPar (Unquoted 0))))
= Lam (Lam (Var 1))

When quote moves underneath a binder, we introduce a temporary
name for the bound variable. To ensure that names invented during
quotation do not interfere with any other names, we only use the
constructor Unquoted during the quotation process. If the bound
variable actually occurs in the body of the function, we will sooner
or later arrive at those occurrences. We can then generate the correct
de Bruijn index by determining the number of binders we have
passed between introducing and observing the Unquoted variable.

Examples We can now test the implementation on our running
examples. We make the following definitions

id′ = Lam (Inf (Var 0))
const′ = Lam (Lam (Inf (Var 1)))

tpar α = TPar (Const α)
par x = Inf (Par (Const x))

term1 = Ann id′ (Fun (tpar "a") (tpar "a")) :@: par "y"
term2 = Ann const′ (Fun (Fun (tpar "b") (tpar "b"))

(Fun (tpar "a")
(Fun (tpar "b") (tpar "b"))))

:@: id′ :@: par "y"

env1 = [(Const "y", HasType (tpar "a")),
(Const "a", HasKind Star)]

env2 = [(Const "b", HasKind Star)]++ env1

and then run an interactive session in Hugs or GHCi2:

〉 quote0 (eval↑ term1 [])
Inf (Par (Const "y"))

〉 quote0 (eval↑ term2 [])
Lam (Inf (Var 0))

〉 type↑0 env1 term1
Right (TPar (Const "a"))

〉 type↑0 env2 term2
Right (Fun (TPar (Const "b")) (TPar (Const "b")))

We have implemented a parser, pretty-printer and a small read-eval-
print loop,3 so that the above interaction can more conveniently
take place as:

〉〉 assume (α :: ∗) (y :: α)

〉〉 ((λx→ x) :: α→ α) y
y :: α

〉〉 assume β :: ∗

〉〉 ((λx y→ x) :: (β → β)→ α→ β → β) (λx→ x) y
λx→ x :: β → β

2 Using lhs2TEX [10], one can generate a valid Haskell program from the
sources of this paper. The results given here automatically generated when
this paper is typeset.
3 The code is included in the paper sources, but omitted from the typeset
version for brevity.

With assume, names are introduced and added to the context. For
each term, the interpreter performs type checking and evaluation,
and shows the final value and the type.

3. Dependent types
In this section, we will modify the type system of the simply-
typed lambda calculus into a dependently-typed lambda calculus,
called λ5. The differences are relatively small; in some cases,
introducing dependent types even simplifies our code. We begin
by discussing the central ideas motivating the upcoming changes.

Dependent function space In Haskell we can define polymorphic
functions, such as the identity:

id :: ∀α.α→ α
id = λx→ x

By using polymorphism, we can avoid writing the same function
on, say, integers and booleans. When such expressions are trans-
lated to GHC’s core language, the polymorphism does not disap-
pear. Instead, the identity function in the core takes two arguments:
a type α and a value of type α. Calls to the identity function in the
core, must explicitly instantiate the identity function with a type:

id Bool True :: Bool
id Int 3 :: Int

Haskell’s polymorphism allows types to abstract over types. Why
would you want to do anything different? Consider the following
data types:

data Vector1 α = Vector1 α
data Vector2 α = Vector2 α α
data Vector3 α = Vector3 α α α

Clearly, there is a pattern here. We would like to write down a
type with the following kind:

∀α :: ∗.∀n :: Nat.Vec α n

but we cannot do this in Haskell. The problem is that the type Vec
abstracts over the value n.

The dependent function space ‘∀’ generalizes the usual function
space ‘→’ by allowing the range to depend on the domain. The
parametric polymorphism known from Haskell can be seen as a
special case of a dependent function, motivating our use of the
symbol ‘∀’.4 In contrast to polymorphism, the dependent function
space can abstract over more than just types. The Vec type above is
a valid dependent type.

It is important to note that the dependent function space is a
generalization of the usual function space. We can, for instance,
type the identity function on vectors as follows:

∀α :: ∗.∀n :: Nat.∀v :: Vec α n.Vec α n

Note that the type v does not occur in the range: this is simply
the non-dependent function space already familiar to Haskell pro-
grammers. Rather than introduce unnecessary variables, such as v,
we use the ordinary function arrow for the non-dependent case. The
identity on vectors then has the following, equivalent, type:

∀α :: ∗.∀n :: Nat.Vec α n→ Vec α n

In Haskell, one can sometimes ‘fake’ the dependent function
space [15], for instance by defining natural numbers on the type
level (i.e., by defining data types Zero and Succ). Since the type
level numbers are different from the value level natural numbers,
one then end up duplicating a lot of concepts on both levels. Fur-
thermore, even though one can lift certain values to the type level
in this fashion, additional effort – in the form of advanced type

4 Type theorists call dependent function types 5-types and would write
5α : ∗.5n : Nat.Vec α n instead.

5 2007/6/22

e ⇓ v
e :: τ ⇓ v ∗ ⇓ ∗

τ ⇓ v τ ′ ⇓ v′

∀x :: τ.τ ′ ⇓ ∀x :: v.v′ x ⇓ x

e1 ⇓ λx→ v1 e2 ⇓ v2
e1 e2 ⇓ v1[x 7→ v2]

e1 ⇓ n1 e2 ⇓ v2
e1 e2 ⇓ n1 v2

e ⇓ v
λx→ e ⇓ λx→ v

Figure 8. Evaluation in λ5

class programming – is required to perform any computation on
such types. Using dependent types, we can parameterize our types
by values, and as we will shortly see, the normal evaluation rules
apply.

Everything is a term Allowing values to appear freely in types
breaks the separation of expressions, types, and kinds we men-
tioned in the introduction. There is no longer a distinction between
these different levels: everything is a term. In Haskell, the symbol
‘::’ relates entities on different levels: In 0 :: Nat, the 0 is a value
and Nat a type, in Nat :: ∗, the Nat is a type and ∗ is a kind. Now,
∗, Nat and 0 are all terms. While 0 :: Nat and Nat :: ∗ still hold, the
symbol ‘::’ relates two terms. All these entities now reside on the
same syntactic level.

We have now familiarized ourselves with the core ideas of
dependently-typed systems. Next, we discuss what we have to
change in λ→ in order to accomplish these ideas and arrive at λ5.

3.1 Abstract syntax
We no longer have the need for a separate syntactic category of
types or kinds, all constructs for all levels are now integrated into
the expression language:

e, τ, κ ::= e :: τ annotated term
| ∗ the type of types
| ∀x :: τ.τ ′ dependent function space
| x variable
| e1 e2 application
| λx→ e lambda abstraction

The modifications compared to the abstract syntax of the simply-
typed lambda calculus in Section 2.1 are highlighted.

We now also use the symbols τ and κ to refer to expressions,
that is, we use them if the terms denoted play the role of types
or kinds, respectively. For instance, the occurrence of τ in an
annotated term now refers to another expression.

New constructs are imported from what was formerly in the
syntax of types and kinds. The kind ∗ is now an expression. Arrow
kinds and arrow types are subsumed by the new construct for the
dependent function space. Type variables and term variables now
coincide.

3.2 Evaluation
The modified evaluation rules are in Figure 8. All the rules are the
same as in the simply-typed case in Figure 1, only the rules for the
two new constructs are added. Perhaps surprisingly, evaluation now
also extends to types. But this is exactly what we want: The power
of dependent types stems exactly from the fact that we can mix val-
ues and types, and that we have functions, and thus computations
on the type level. However, the new constructs are comparatively
uninteresting for computation: the ∗ evaluates to itself; in a depen-
dent function space, we recurse structurally, evaluating the domain
and the range. Therefore, we must extend the abstract syntax of
values:

v ::= x v name application
| ∗ the type of types
| ∀x :: v.v′ dependent function space
| λx→ v lambda abstraction

0 ::= ε empty context
| 0, x :: τ adding a variable valid(ε)

valid(0) 0 ` τ ::↓ ∗

valid(0, x :: τ)

Figure 9. Contexts in λ5

0 ` τ ::↓ ∗ 0 ` e ::↓ τ

0 ` (e :: τ) ::↑ τ 0 ` ∗ ::↑ ∗
0 ` τ ::↓ ∗ 0, x :: τ ` τ ′ ::↓ ∗

0 ` ∀x :: τ.τ ′ ::↑ ∗

0(x) = τ

0 ` x ::↑ τ

0 ` e1 ::↑ ∀x :: τ.τ ′ 0 ` e2 ::↓ τ

0 ` e1 e2 ::↑ τ ′[x 7→ e2]

0 ` e ::↑ τ ′ τ ⇓ v τ ′ ⇓ v
0 ` e ::↓ τ

0, x :: τ ` e ::↓ τ ′

0 ` λx→ e ::↓ ∀x :: τ.τ ′

Figure 10. Type rules for λ5

3.3 Type system
Before we approach the type rules themselves, we must take a look
at contexts again. It turns out that because everything is a term
now, the syntax of contexts becomes simpler, as do the rules for
the validity of contexts (Figure 9, compare with Figure 2).

Contexts now contain only one form of entry, stating the type a
variable is assumed to have. The precondition 0 ` τ ::↓ ∗ in the
validity rule for non-empty contexts no longer refers to a special
judgement for the well-formedness of types, but to the type rules
we are about to define – we no longer need special well-formedness
rules for types. The precondition ensures in particular that τ does
not contain unknown variables.

The type rules are given in Figure 10. Again, we have high-
lighted the differences to Figure 3. We keep the difference between
rules for inference (::↑), where the type is an output, and checking
(::↓), where the type is an input. The new constructs ∗ and ∀ are
among the constructs for which we can infer the type. As before
for λ→, we assume that all the contexts that occur in the type rules
are valid.

The only change for an annotated term is that – similar to what
we have already seen for contexts – the kind check for τ no longer
refers to the well-formedness rules for types, but is an ordinary type
check itself.

The kind ∗ is itself of type ∗. Although there are theoretical
objections to this choice [6], we believe that for the purpose of this
paper, the simplicity of our implementation outweighs any such
objections.

The rule for the dependent function space is somewhat similar
to the well-formedness rule for arrow types for λ→ in Figure 2.
Both the domain τ and the range τ ′ of the dependent function are
required to be of kind ∗. In contrast to the rule in Figure 2, τ ′ may
refer to x, thus we extend 0 by x :: τ while checking e′.

Nothing significant changes for variables.
In a function application, the function must now be of a depen-

dent function type ∀x :: τ.τ ′. The difference to an ordinary function
type is that τ ′ can refer to x. In the result type of the application, we
therefore substitute the actual argument e2 for the formal parame-
ter x in τ ′.

Checking an inferable term works as before: we first infer a
type, then compare the two types for equality. However, types
are now terms and can contain computations, so syntactic equal-
ity would be far too restrictive: it would be rather unfortunate if
Vec α 2 and Vec α (1 + 1) did not denote the same type. As a
result, we evaluate the types to normal forms and compare the nor-
mal forms syntactically. Most type systems with dependent types

6 2007/6/22

have a rule of the form:
0 ` e :: τ τ =β τ ′

0 ` e :: τ ′

This rule, referred to as the conversion rule, however, is clearly not
syntax directed. Our distinction between inferable and checkable
terms ensures that the only place where we need to apply the
conversion rule, is when a term is explicitly annotated with its type.

The final type rule is for checking a lambda abstraction. The
difference here is that the type is a dependent function type. Note
that the bound variable x may now not only occur in the body of the
function e. The extended context 0, x :: τ is therefore used both for
type checking the function body and kind checking the the range τ ′.

To summarize, all the modifications are motivated by the two
key concepts we have introduced in the beginning of Section 3: the
function space is generalized to the dependent function space; types
and kinds are also terms.

3.4 Implementation
The type rules we have given are still syntax-directed and algorith-
mic, so no major changes to the implementation is required. How-
ever, one difference between the implementation and the rules is
that during the implementation, we always evaluate types as soon
as they have been kind checked. This means that most of the oc-
currences of types (τ or τ ′) in the rules are actually values in the
implementation.

In the following, we go through all aspects of the implementa-
tion, but only look at the definitions that have to be modified.

Abstract syntax The type Name remains unchanged. So does the
type Term↓. We no longer require Type and Kind, but instead add
two new constructors to Term↑ and replace the occurrence of Type
in Ann with a Term↓:

data Term↑
= Ann Term↓ Term↓
| Star
| Pi Term↓ Term↓
| Var Int
| Par Name
| Term↑ :@: Term↓

deriving (Show, Eq)

We also extend the type of values with the new constructs.

data Value
= VLam (Value→ Value)
| VStar
| VPi Value (Value→ Value)
| VNeutral Neutral

As before, we use higher-order abstract syntax for the values,
i.e., we encode binding constructs using Haskell functions. With
VPi, we now have a new binding construct. In the dependent func-
tion space, a variable is bound that is visible in the range, but not in
the domain. Therefore, the domain is simply a Value, but the range
is represented as a function of type Value→ Value.

Evaluation To adapt the evaluator, we just add the two new cases
for Star and Pi to the eval↑ function, as shown in Figure 11 (see
Figure 4 for the evaluator for λ→). Evaluation of Star is trivial.
For a Pi type, both the domain and the range are evaluated. In the
range, where the bound variable x is visible, we have to add it to
the environment.

Contexts Contexts map variables to their types. Types are on the
term level now. We store types in their evaluated form, and thus
define:

type Type = Value

type Context = [(Name, Type)]

eval↑ Star d = VStar
eval↑ (Pi τ τ ′) d = VPi (eval↓ τ d) (λx→ eval↓ τ ′ (x : d))

iSubst i r Star = Star
iSubst i r (Pi τ τ ′) = Pi (cSubst i r τ) (cSubst (i+ 1) r τ ′)

quote i VStar = Inf Star
quote i (VPi v f)
= Inf (Pi (quote i v) (quote (i+ 1) (f (vpar (Unquoted i)))))

Figure 11. Extending evaluation, substitution and quotation to λ5

type↑ :: Int→ Context→ Term↑ → Result Type

type↑ i 0 (Ann e τ)

= do type↓ i 0 τ VStar
let v = eval↓ τ []
type↓ i 0 e v
return v

type↑ i 0 Star
= return VStar

type↑ i 0 (Pi τ τ ′)

= do type↓ i 0 τ VStar
let v = eval↓ τ []
type↓ (i+ 1) ((Bound i, v) : 0)

(subst↓ 0 (Par (Bound i)) τ ′) VStar
return VStar

type↑ i 0 (Par x)
= case lookup x 0 of

Just v → return v
Nothing→ throwError "unknown identifier"

type↑ i 0 (e1 :@: e2)

= do σ ← type↑ i 0 e1
case σ of

VPi v f → do type↓ i 0 e2 v
return (f (eval↓ e2 []))

→ throwError "illegal application"

type↓ :: Int→ Context→ Term↓ → Type→ Result ()

type↓ i 0 (Inf e) v
= do v′ ← type↑ i 0 e

unless (quote0 v = = quote0 v′) (throwError "type mismatch")

type↓ i 0 (Lam e) (VPi v f)
= type↓ (i+ 1) ((Bound i, v) : 0)

(subst↓ 0 (Par (Bound i)) e) (f (vpar (Bound i)))
type↓ i 0

= throwError "type mismatch"

Figure 12. Implementation of a type checker for λ5

Type checking Let us go through each of the cases in Figure 12
one by one. The cases for λ→– for comparison – are in Figure 5.
For an annotated term, we first check that the annotation is a type
of kind ∗, using the type-checking function type↓. We then evaluate
the type. The resulting value v is used to check the term e. If that
succeeds, the entire expression has type v.

The (evaluated) type of Star is VStar.
For a dependent function type, we first kind-check the domain τ .

Then the domain is evaluated to v. The value is added to the context
while kind-checking the range – the idea is similar to the type-
checking rules for Lam in λ→ and λ5.

There are no significant changes in the Par case.

7 2007/6/22

In the application case, the type inferred for the function is a
Value now. This type must be of the form VPi v f , i.e., a dependent
function type. In the corresponding type rule in Figure 10, the
bound variable x is substituted by e2 in the result type τ ′. In the
implementation, f is the function corresponding to τ ′, and the
substitution is performed by applying it to the (evaluated) e2.

In the case for Inf, we have to perform the type equality check.
In contrast to the type rules, we already have two values v and v′.
To compare the values, we quote them and compare the resulting
terms syntactically.

In the case for Lam, we require a dependent function type of
form VPi v f now. As in the corresponding case for λ→, we add the
bound variable (of type v) to the context while checking the body.
But we now perform substitution on the function body e (using
subst↓) and on the result type f (by applying f).

We thus only have to extend the substitution functions, by
adding the usual two cases for Star and Pi as shown in Figure 11.
There’s nothing to subsitute for Star. For Pi, we have to incre-
ment the counter before substituting in the range because we pass
a binder.

Quotation To complete our implementation of λ5, we only have
to extend the quotation function. This operation is more important
than for λ→, because as we have seen, it is used in the equality
check during type checking. Again, we only have to add equations
for VStar and VPi, which are shown in Figure 11.

Quoting VStar yields Star. Since the dependent function type is
a binding construct, quotation for VPi works similar to quotation
of VLam: to quote the range, we increment the counter i, and apply
the Haskell function representing the range to Unquoted i.

3.5 Where are the dependent types?
We now have adapted our type system and its implementation
to dependent types, but unfortunately, we have not yet seen any
examples.

Again, we have written a small interpreter around the type
checker we have just presented, and we can use it to define and
check, for instance, the polymorphic identity function (where the
type argument is explicit), as follows:

〉〉 let id = (λα x→ x) :: ∀(α :: ∗).α→ α
id :: ∀(x :: ∗) (y :: x).x
〉〉 assume (Bool :: ∗) (False :: Bool)

〉〉 id Bool
λx→ x :: ∀x :: Bool.Bool
〉〉 id Bool False
False :: Bool

This is more than we can do in the simply-typed setting, but it
is by no means spectacular and does not require dependent types.
Unfortunately, while we have a framework for dependent types in
place, we cannot write any interesting programs as long as we do
not add at least a few specific data types to our language.

4. Beyond λ5

In Haskell, data types are introduced by special data declarations:

data Nat = Zero | Succ Nat

This introduces a new type Nat, together with two constructors
Zero and Succ. In this section, we investigate how to extend our
language with data types, such as natural numbers.

Obviously, we will need to add the type Nat together with its
constructors; but how should we define functions, such as addition,
that manipulate numbers? In Haskell, we would define a function
that pattern matches on its arguments and makes recursive calls to
smaller numbers:

Nat ⇓ Nat Zero ⇓ Zero
k ⇓ l

Succ k ⇓ Succ l

pz ⇓ v
natElim m mz ms Zero ⇓ v

ps k (natElim m mz ms k) ⇓ v
natElim m mz ms (Succ k) ⇓ v

Figure 13. Evaluation of natural numbers

0 ` Nat :: ∗ 0 ` Zero :: Nat

0 ` k :: Nat

0 ` Succ k :: Nat

0 ` m :: Nat→ ∗
0, m :: Nat→ ∗ ` mz :: m Zero

0, m :: Nat→ ∗ ` ms :: ∀k :: Nat.m k→ m (Succ k)
0 ` n :: Nat

0 ` natElim m mz ms n :: m n

Figure 14. Typing rules for natural numbers

plus :: Nat→ Nat→ Nat
plus Zero n = n
plus (Succ k) n = Succ (plus k n)

In our calculus so far, we can neither pattern match nor make
recursive calls. How could we hope to define plus?

In Haskell, we can define recursive functions on data types using
a fold [18]. Rather than introduce pattern matching and recursion,
and all the associated problems, we define functions over natural
numbers using the corresponding fold. In a dependently type set-
ting, however, we can define a slightly more general version of a
fold called the eliminator.

The eliminator is a higher-order function, similar to a fold,
describing how to write programs over natural numbers. The fold
for natural numbers has the following type:

foldNat :: ∀α :: ∗.α→ (α→ α)→ Nat→ α

This much should be familiar. In the context of dependent types,
however, we can be more general. There is no need for the type α
to be uniform across the constructors for natural numbers: rather
than use α :: ∗, we use m :: Nat→ ∗. This leads us to the following
type of natElim:

natElim :: ∀m :: Nat→ ∗. m Zero
→ (∀k :: Nat.m k→ m (Succ k))
→ ∀n :: Nat.m n

The first argument of the eliminator is the sometimes referred to as
the motive [14]; it explains the reason we want to eliminate natural
numbers. The second argument corresponds to the base case, where
n is Zero; the third argument corresponds to the inductive case
where n is Succ k, for some k. In the inductive case, we must
describe how to construct m (Succ k) from k and m k. The result of
natElim is a function that given any natural number n, will compute
a value of type m n.

In summary, adding natural numbers to our language involves
adding three separate elements: the type Nat, the constructors Zero
and Succ, and the eliminator natElim.

4.1 Implementing natural numbers
To implement these three components, we extend the abstract syn-
tax and correspondingly add new cases to the evaluation and type
checking functions. These new cases do not require any changes to
existing code; we choose to focus only on the new code fragments.

Abstract Syntax To implement natural numbers, we extend our
abstract syntax as follows:

data Term↑ = . . .
| Nat
| NatElim Term↓ Term↓ Term↓ Term↓

8 2007/6/22

eval↓ Zero d = VZero
eval↓ (Succ k) d = VSucc (eval↓ k d)

eval↑ Nat d = VNat
eval↑ (NatElim m mz ms n) d
= let mzVal = eval↓ mz d

msVal = eval↓ ms d
rec nVal =

case nVal of
VZero → mzVal
VSucc k → msVal ‘vapp‘ k ‘vapp‘ rec k
VNeutral n→ VNeutral

(NNatElim (eval↓ m d) mzVal msVal n)

→ error "internal: eval natElim"

in rec (eval↓ n d)

Figure 15. Extending the evaluator natural numbers

data Term↓ = . . .
| Zero
| Succ Term↓

We add new constructors corresponding to the type of and elim-
inator for natural numbers to the Term↑ data type. The NatElim
constructor is fully applied: it expects no further arguments.

Similarly, we extend Term↓ with the constructors for natural
numbers. This may seem odd: we will always know the type of
Zero and Succ, so why not add them to Term↑ instead? For more
complicated types, however, such as dependent pairs, it is not
always possible to infer the type of the constructor without a type
annotation. We choose to add all constructors to Term↓, as this
scheme will work for all data types.

Evaluation We need to rethink our data type for values. Pre-
viously, values consisted exclusively of lambda abstractions and
‘stuck’ applications. Clearly, we will need to extend the data type
for values to cope with the new constructors for natural numbers.

data Value = . . .
| VNat
| VZero
| VSucc Value

Introducing the eliminator, however, also complicates evaluation.
The eliminator for natural numbers can also be stuck when the
number being eliminated does not evaluate to a constructor. Cor-
respondingly, we extend the data type for neutral terms covers this
case:

data Neutral = . . .
| NNatElim Value Value Value Neutral

The implementation of evaluation in Figure 15 closely follows
the rules in Figure 13. The eliminator is the only interesting case.
Essentially, the eliminator evaluates to the Haskell function with the
behaviour you would expect: if the number being eliminated evalu-
ates to VZero, we evaluate the base case mz; if the number evaluates
to VSucc k, we apply the step function ms to the predecessor k and
the recursive call to the eliminator; finally, if the number evaluates
to a neutral term, the entire expression evaluates to a neutral term.
If the value being eliminated is not a natural number or a neutral
term, this would have already resulted in a type error. Therefore,
the final catch-all case should never be executed.

Typing Figure 16 contains the implementation of the type checker
that deals with natural numbers. Checking that Zero and Succ con-
struct natural numbers is straightforward.

Type checking the eliminator is bit more involved. Remember
that the eliminator has the following type:

type↓ i 0 Zero VNat = return ()

type↓ i 0 (Succ k) VNat = type↓ i 0 k VNat

type↑ i 0 Nat = return VStar
type↑ i 0 (NatElim m mz ms n) =

do type↓ i 0 m (VPi VNat (const VStar))
let mVal = eval↓ m []
type↓ i 0 mz (mVal ‘vapp‘ VZero)

type↓ i 0 ms
(VPi VNat (λn→
VPi (mVal ‘vapp‘ n) (λ →

mVal ‘vapp‘ VSucc n)))

type↓ i 0 n VNat
let nVal = eval↓ n []
return (mVal ‘vapp‘ nVal)

Figure 16. Extending the type checker for natural numbers

natElim :: ∀m :: Nat→ ∗. m Zero
→ (∀k :: Nat.m k→ m (Succ k))
→ ∀n :: Nat.m n

We begin by type checking and evaluating the motive m. Once we
have the value of m, we type check the two branches. The branch
for zero should have type m Zero; the branch for successors should
have type ∀k :: Nat.m k → m (Succ k). Despite the apparent
complication resulting from having to hand code complex types,
type checking these branches is exactly what would happen when
type checking a fold over natural numbers in Haskell. Finally, we
check that the n we are eliminating is actually a natural number.
The return type of the entire expression is the motive, accordingly
applied to the number being eliminated.

Other functions To complete the implementation of natural num-
bers, we must also extend the auxiliary functions for substitution
and quotations with new cases. All new code is, however, com-
pletely straight-forward, because no new binding constructs are in-
volved.

Addition With all the ingredients in place, we can finally define
addition in our interpreter as follows:
〉〉 let plus = natElim (λ → Nat→ Nat)

(λn→ n)
(λk rec n→ Succ (rec n))

plus :: ∀(x :: Nat) (y :: Nat).Nat

We define a function plus by eliminating the first argument of the
addition. In each case branch, we must define a function of type
Nat → Nat; we choose our motive correspondingly. In the base
case, we must add zero to the argument n – we simply return n. In
the inductive case, we are passed the predecessor k, the recursive
call rec (that corresponds to adding k), and the number n, to which
we must add Succ k. We proceed by adding k to n using rec, and
wrapping an additional Succ around the result. After having defined
plus, we can evaluate simple additions in our interpreter5:
〉〉 plus 40 2
42 :: Nat

Clearly programming with eliminators does not scale very well.
We defer the discussion about how this might be fixed to Section 5.

4.2 Implementing vectors
Natural numbers are still not particularly exciting: they are still
the kind of data type we can write quite easily in Haskell. As an
example of a data type that really makes use of dependent types,
we show how to implement vectors.

5 For convenience, our parser and pretty-printer support literals for natural
numbers. For instance, 2 is translated to Succ (Succ Zero)) :: Nat on the fly.

9 2007/6/22

eval↑ (VecElim α m mn mc n xs) d =
let mnVal = eval↓ mn d

mcVal = eval↓ mc d
rec nVal xsVal =

case xsVal of
VNil → mnVal
VCons k x xs→ foldl vapp mcVal [k, x, xs, rec k xs]
VNeutral n → VNeutral

(NVecElim (eval↓ α d) (eval↓ m d)

mnVal mcVal nVal n)

→ error "internal: eval vecElim"

in rec (eval↓ n d) (eval↓ xs d)

Figure 17. Implementation of the evaluation of vectors

As was the case for natural numbers, we need to define three
separate components: the type of vectors, its the constructors, and
the eliminator. We have already mentioned that vectors are param-
eterized by both a type and a natural number:
∀α :: ∗.∀n :: Nat.Vec α n :: ∗

The constructors for vectors are analogous to those for Haskell
lists. The only difference is that their types record the length of
the vector:

Nil :: ∀α :: ∗.Vec α Zero
Cons :: ∀α :: ∗.∀n :: Nat.α→ Vec α n→ Vec α (Succ n)

The eliminator for vectors behaves essentially the same as foldr
on lists, but its type is a great deal more specific (and thus, more
involved):

vecElim :: ∀α :: ∗.∀m :: (∀n :: Nat.Vec α n→ ∗).
m Zero (Nil α)

→ (∀n :: Nat.∀x :: α.∀xs :: Vec α n.
m n xs→ m (Succ n) (Cons α n x xs))

→ ∀n :: Nat.∀xs :: Vec α n.m n xs

The whole eliminator is quantified over the element type α of the
vectors. The next argument of the eliminator is the motive. As was
the case for natural numbers, the motive is a type (kind ∗) param-
eterized by a vector. As vectors are themselves parameterized by
their length, the motive expects an additional argument of type Nat.
The following two arguments are the cases for the two constructors
of Vec. The constructor Nil is for empty vectors, so the correspond-
ing argument is of type m Zero (Nil α). The case for Cons takes
a number n, a element x of type α, a vector xs of length n, and the
result of the recursive application of the eliminator of type m n xs.
It combines those elements to form the required type, for the vector
of length Succ n where x has been added to xs. The final result is a
function that eliminates a vector of any length.

The type of the eliminator may look rather complicated. How-
ever, if we compare with the type of foldr on lists

foldr :: ∀α :: ∗.∀m :: ∗.m→ (α→ m→ m)→ [α]→ m

we see that the structure is the same, and the additional complexity
stems only from the fact that the motive is parameterized by a
vector, and vectors are in turn parameterized by natural numbers.

Not all of the arguments of vecElim are actually required – some
of the arguments can be inferred from others, to reduce the noise
and make writing programs more feasible. We would like to remind
you that λ5 is designed to be a very explicit, low-level language.

Abstract syntax As was the case for natural numbers, we extend
the abstract syntax. We add the type of vectors and its eliminator to
Term↑; we extend Term↓ with the constructors Nil and Cons.

data Term↑ = . . .

| Vec Term↓ Term↓
| VecElim Term↓ Term↓ Term↓ Term↓ Term↓ Term↓

type↓ i 0 (Nil α) (VVec bVal VZero) =

do type↓ i 0 α VStar
let aVal = eval↓ α []
unless (quote0 aVal = = quote0 bVal)

(throwError "type mismatch")

type↓ i 0 (Cons α n x xs) (VVec bVal (VSucc k)) =
do type↓ i 0 α VStar

let aVal = eval↓ α []
unless (quote0 aVal = = quote0 bVal)

(throwError "type mismatch")

type↓ i 0 n VNat
let nVal = eval↓ n []
unless (quote0 nVal = = quote0 k)

(throwError "number mismatch")

type↓ i 0 x aVal
type↓ i 0 xs (VVec bVal k)

type↑ i 0 (Vec α n) =

do type↓ i 0 α VStar
type↓ i 0 n VNat
return VStar

type↑ i 0 (VecElim α m mn mc n vs) =
do type↓ i 0 α VStar

let aVal = eval↓ α []
type↓ i 0 m

(VPi VNat (λn→
VPi (VVec aVal n) (λ →

VStar)))
let mVal = eval↓ m []
type↓ i 0 mn (foldl vapp mVal [VZero, VNil aVal])
type↓ i 0 mc

(VPi VNat (λn→
VPi aVal (λy→
VPi (VVec aVal n) (λys→
VPi (foldl vapp mVal [n, ys]) (λ →

(foldl vapp mVal [VSucc n, VCons aVal n y ys]))))))
type↓ i 0 n VNat
let nVal = eval↓ n []
type↓ i 0 vs (VVec aVal nVal)
let vsVal = eval↓ vs []
return (foldl vapp mVal [nVal, vsVal])

Figure 18. Extending the type checker for vectors

data Term↓ = . . .

| Nil Term↓
| Cons Term↓ Term↓ Term↓ Term↓

Note that also Nil takes an argument, because both constructors are
polymorphic in the element type. Correspondingly, we extend the
data types for values and neutral terms:

data Value = . . .
| VNil Value
| VCons Value Value Value Value
| VVec Value Value

data Neutral = . . .
| NVecElim Value Value Value Value Value Neutral

Evaluation Evaluation of constructors or the Vec type proceeds
structurally, turning terms into their value counterparts. Once again,
the only interesting case is the evaluation of the eliminator for
vectors, shown in Figure 17. As indicated before, the behaviour
resembles a fold on lists: depending on whether the vector is a
VNil or a VCons, we apply the appropriate argument. In the case

10 2007/6/22

for VCons, we also call the eliminator recursively on the tail of the
vector (of length k). If the eliminated vector is a neutral element,
we cannot reduce the eliminator, and produce a neutral term again.

Type checking We extend the type checker as shown in Figure 18.
The code is relatively long, but keeping the types of each of the
constructs in mind, there are absolutely no surprises.

As for natural numbers, we have omitted the new cases for sub-
stitution and quotation, because they are entirely straight-forward.

Append We are now capable of demonstrating a real dependently
typed program in action, a function that appends two vectors while
keeping track of their lengths. The definition in the interpreter looks
as follows:

〉〉 let append =
(λα→ vecElim α

(λm → ∀(n :: Nat).Vec α n→ Vec α (plus m n))
(λ v→ v)
(λm v vs rec n w→ Cons α (plus m n) v (rec n w)))

:: ∀(α :: ∗) (m :: Nat) (v :: Vec α m) (n :: Nat) (w :: Vec α n).
Vec α (plus m n)

Like for plus, we define a binary function on vectors by eliminating
the first argument. The motive is chosen to expect a second vector.
The length of the resulting vector is the sum of the lengths of the
argument vectors plus m n. Appending an empty vector to another
vector v results in v. Appending a vector of the form Cons m v vs to
a vector v works by invoking recursion via rec (which appends vs
to w) and prepending v. Of course, we can also apply the function
thus defined:

〉〉 assume (α :: ∗) (x :: α) (y :: α)

〉〉 append α 2 (Cons α 1 x (Cons α 0 x (Nil α)))
1 (Cons α 0 y (Nil α))

Cons α 2 x (Cons α 1 x (Cons α 0 y (Nil α))) :: Vec α 3

We assume a type α with two elements x and y, and append a vector
containing two x’s to a vector containing one y.

4.3 Summary
In this section, we have demonstrated how to add two data types
to the λ5: natural numbers and vectors. Using exactly the same
principles, many more data types can be added. For example, for
any natural number n, we can define the type Fin n that contains
exactly n elements. In particular, Fin 0, Fin 1 and Fin 2 are the
empty type, the unit type, and the type of booleans respectively.
Furthermore, Fin can be used to define a total projection function
from vectors, of type project :: ∀(α :: ∗) (n :: Nat).Vec α n →
Fin n→ α.

Another interesting dependent type is the equality type Eq ::
∀(α :: ∗).α → α → ∗ with a single constructor Refl :: ∀(α ::
∗) (x :: α) → Eq α x x, Using Eq, we can state and prove
theorems about our code directly in λ5. For instance, the type
∀(α :: ∗) (n :: Nat).Eq Nat (plus n Zero) n states that Zero is
the right-neutral element of addition. Any term of that type serves
as a proof of that theorem, via the Curry-Howard isomorphism.

A few of these examples are included with the interpreter in
the paper sources, which can be downloaded via the λ5 home-
page [11]. More about suitable data types for dependently typed
languages and writing dependently-typed programs can be found
in another tutorial [16].

5. Toward dependently-typed programming
The calculus we have described is far from a real programming
language. Although we can write, type check, and evaluate simple
expressions there is still a lot of work to be done before it becomes
feasible to write large, complex programs. Most of the remaining

work is, in fact, still subject to exciting new research. There is really
too much to cover, but we attempt to identify several important
points.

Program development As it stands, the core system we have pre-
sented requires programmers to explicitly instantiate polymorphic
functions. This is terribly tedious! Take the append function we de-
fined: of its five arguments, only two are interesting. Fortunately,
uninteresting arguments can usually be inferred. Many program-
ming languages and proof assistants based on dependent types have
support for implicit arguments that the user can omit when calling a
function. Note that these arguments need not be types: the append
function is ‘polymorphic’ in the length of the vectors.

Writing programs with complex types in one go is not easy.
Epigram [9] and Agda [20] allow programmers to put ‘holes’ in
their code, leaving parts of their programs undefined. Programmers
can then ask the system what type a specific hole has, effectively
allowing the incremental development of complex programs.

Our system cannot do any type inference. The distinction be-
tween Term↑s and Term↓s may minimize the number of annota-
tions that must be present, but types are never inferred. This may
seem quite a step back from Haskell. On the contrary, once you
provide such detailed type information parts of your program can
actually be inferred. This is demonstrated by Epigram. In Epigram
all high-level programs are ‘compiled’ down to a core type theory,
similar to the one we have defined hered. When you perform case
analysis on a non-empty vector, however, you do not need to write
the case for Nil. In reality, a clever choice of motive and automation
explains to the eliminator why that branch is impossible. While we
may need to be more explicit about our types, the type information
can help guide our program development.

Totality As our implementation illustrates, typing checking a de-
pendently typed programming language involves evaluating func-
tions statically. For this reason, it is important to know when a func-
tion is total, i.e., when a function is guaranteed to produce a result
for every in input in finite time. If we guarantee that only total func-
tions may be evaluated during type checking, type checking will
remain decidable.

On the other hand, most functional programmers write partial
functions all the time. For example, the head function only works
on non-empty lists. Similarly, functions may use general recursion
and diverge on malformed input. In a sense the situation is akin to
Haskell, before the introduction of monads to encapsulate IO. It is
clear that dependently typed programming languages must come to
terms with partial functions. Finding the right solution, however, is
still very much an open problem.

Cayenne [1], for instance, allowed programmers to freely de-
fine functions using general recursion. As a result, Cayenne’s
type checker could loop. Similar problems arise when we allow
Haskell’s case construct: the type checker could crash with an ex-
ception equivalent to Prelude.head: empty list. In this paper
we taken a more prudent approach and only allow recursion and
pattern matching via eliminators, which are guaranteed to produce
total functions.

As our examples illustrate, however, programming with elim-
inators does not scale. Epigram uses a clever choice of motive
to make programming with eliminators a great deal more practi-
cal [13, 17]. By choosing the right motive, we can exploit type in-
formation when defining complicated functions. Eliminators may
not appear to be terribly useful, but they form the foundations on
which dependently typed programming languages may be built.

There may be situations, however, where programming with
eliminators is just not enough. One possible solution is to permit
general recursion, encapsulated in a suitable monad. Just as the
IO monad encapsulates impure functions in Haskell, monads can

11 2007/6/22

also be used to introduce partial functions into a total language [5].
Finding the right way to tackle partiality, without sacrificing theo-
retical properties of the type system, requires both more research
and practical experience.

Real world programming Although we have added several data
types to the core theory, we cannot expect programmers to imple-
ment new data types by hacking them into the compiler. We need
to add support for user-defined data types. Once again, we must be
careful about which data types we allow. For example, general re-
cursion can be introduced via data types with negative occurrences,
such as our Value type.

Recently, generalized algebraic data types have caused quite
some excitement in the Haskell community. In the presence of
dependent types, GADTs (or indexed families as they are known in
the type theory community) become even more expressive. Vectors
already illustrate that indexing by a value, instead of a type, allows
you to be more precise about the structure of data and the invariants
it satisfies. This pattern pops up everywhere: well-typed lambda
terms; proof-carrying code; red-black trees; the list goes on and on.

There has been very little research on how to compile depen-
dently typed languages. As a result, many people believe dependent
types are inherently inefficient: naively compiling append would
result in code that computes the length of the resulting vector, even
if this information is not used anywhere. Such computations, how-
ever, are only relevant during type checking. This illustrates how
there is still a distinction between evaluation for the sake of type
checking and evaluation to compute the result of your program.
Edwin Brady covers this, together with various optimizations only
possible due to the presence of richer type information, in his the-
sis [3, 4].

6. Discussion
There is a large amount of relevant literature regarding both imple-
menting type systems and type theory. Pierce’s book [21] is an ex-
cellent place to start. Martin-Löf’s notes on type theory [12] are still
highly relevant and form an excellent introduction to the subject.
More recent books by Nordström et al. [19] and Thompson [22]
are freely available online.

There are several dependently typed programming languages
and proof assistants readily available. Coq [2] is a mature, well-
documented proof assistant. While it is not primarily designed for
dependently typed programming, learning Coq can help get a feel
for type theory. Haskell programmers may feel more at home using
recent versions of Agda [20], a dependently typed programming
language. Not only does the syntax resemble Haskell, but func-
tions may be defined using pattern matching and general recursion.
Finally, Epigram [9, 16] proposes a more radical break from func-
tional programming as we know it. While the initial implementa-
tion is far from perfect, many of Epigram’s ideas are not yet imple-
mented elsewhere.

Other implementations of the type system we have presented
here have been published elsewhere [7, 8]. These implementations
are given in pseudocode and accompanied by a proof of correct-
ness. The focus of our paper is somewhat different: we have chosen
to describe a concrete implementation as a vehicle for explanation.

In the introduction we mentioned some of the concerns Haskell
programmers have regarding dependent types. The type checking
algorithm we have presented here is decidable and will always ter-
minate. The phase distinction between evaluation and type check-
ing becomes more subtle, but is not lost. The fusion of types and
terms introduces new challenges, but also has a lot to offer. Most
importantly, though, getting started with dependent types is not as
hard as you may think. We hope to have whet your appetite, guiding

you through your first steps, but encourage you to start exploring
dependent types yourself!

References
[1] Lennart Augustsson. Cayenne – a language with dependent types.

In ICFP ’98: Proceedings of the Third ACM SIGPLAN International
Conference on Functional Programming, pages 239–250, 1998.

[2] Yves Bertot and Pierre Castéran. Interactive Theorem Proving
and Program Development. Coq’Art: The Calculus of Inductive
Constructions. Springer Verlag, 2004.

[3] Edwin Brady. Practical Implementation of a Dependently Typed
Functional Programming Language. PhD thesis, Durham University,
2005.

[4] Edwin Brady, Conor McBride, and James McKinna. Inductive
families need not store their indices. In Types for Proofs and
Programs, volume 3085 of LNCS. Springer-Verlag, 2004.

[5] Venanzio Capretta. General Recursion via Coinductive Types.
Logical Methods in Computer Science, 1(2):1–18, 2005.

[6] T. Coquand. An analysis of Girard’s paradox. In First IEEE
Symposium on Logic in Computer Science, 1986.

[7] Thierry Coquand. An algorithm for type-checking dependent types.
Science of Computer Programming, 26(1-3):167–177, 1996.

[8] Thierry Coquand and Makoto Takeyama. An implementation of
Type: Type. In International Workshop on Types for Proofs and
Programs, 2000.

[9] Conor McBride et al. Epigram, 2004. http://www.e-pig.org.
[10] Ralf Hinze and Andres Löh. lhs2TEX, 2007. http://www.iai.

uni-bonn.de/~loeh/lhs2tex.
[11] λ5 homepage, 2007. http://www.iai.uni-bonn.de/~loeh/

LambdaPi.
[12] Per Martin-Löf. Intuitionistic type theory. Bibliopolis, 1984.
[13] Conor McBride. Dependently Typed Functional Programs and their

Proofs. PhD thesis, University of Edinburgh, 1999.
[14] Conor McBride. Elimination with a motive. In TYPES ’00: Selected

papers from the International Workshop on Types for Proofs and
Programs, pages 197–216. Springer-Verlag, 2000.

[15] Conor McBride. Faking it: Simulating dependent types in Haskell.
Journal of Functional Programming, 12(5):375–392, 2002.

[16] Conor McBride. Epigram: Practical programming with dependent
types. In Advanced Functional Programming, pages 130–170, 2004.

[17] Conor McBride and James McKinna. The view from the left. Journal
of Functional Programming, 14(1):69–111, 2004.

[18] Erik Meijer, Maarten Fokkinga, and Ross Paterson. Functional
programming with bananas, lenses, envelopes and barbed wire. In
5th Conf. on Functional Programming Languages and Computer
Architecture, 1991.

[19] Bengt Nordström, Kent Petersson, and Jan M. Smith. Programming
in Martin-Löf’s Type Theory: An Introduction. Clarendon, 1990.

[20] Ulf Norell. Agda 2. http://appserv.cs.chalmers.se/users/
ulfn/wiki/agda.php.

[21] Benjamin C. Pierce. Types and programming languages. MIT Press,
Cambridge, MA, USA, 2002.

[22] Simon Thompson. Type theory and functional programming. Addison
Wesley Longman Publishing Co., Inc., 1991.

12 2007/6/22

