
Report on the Tenth ICFP Programming Contest

Eelco Dolstra ∗ Jurriaan Hage † Bastiaan Heeren ‡ Stefan Holdermans † Johan Jeuring †

Andres Löh † Clara Löh § Arie Middelkoop † Alexey Rodriguez † John van Schie †

Abstract
The Tenth Annual ICFP Programming Contest was a 72-hour
contest held July 20–23 2007 and organised in conjunction
with the 12th ACM SIGPLAN International Conference on
Functional Programming (ICFP 2007). As in the previous nine
editions, the goal of the contest was to allow teams from
all over the world to demonstrate the superiority of their
favourite programming language. This year’s task was to
reverse engineer the DNA of a stranded alien life form to
enable it to survive on our planet. The alien’s DNA had to
be modified by means of a prefix that modified its meaning
so that the alien’s phenotype would approximate a given
“ideal” outcome, increasing its probability of survival. In this
report we describe the task, how to solve it, how we created
it, and how the contestants fared. About 357 teams from 39
countries solved at least part of the contest. The language of
choice for discriminating hackers turned out to be C++.

1. The story so far
On Saturday, April 21, 2007, Endo crashed on Earth. Endo is an
alien life form, belonging to the species of the Fuun. While travel-
ling through space to visit some relatives, Endo had fallen asleep.
Endo’s spaceship Arrow drifted into a heap of strange objects where
it was picked up by an Interstellar Garbage Collector. Interstellar
Garbage Collectors are run by another alien species, the Imps, who
are known throughout the galaxy for dumping garbage on under-
developed worlds for aeons. Hence, together with a lot of other stuff,
Arrow and Endo were dropped on our planet.

Arrow is an intelligent spaceship, but was severely damaged by
the crash. Therefore, it could not warn Endo that environmental
conditions on Earth are not suitable for a Fuun. Endo left the ship,
looked upwards, and got hit by a cargo container, also dropped by
the Garbage Collector.

It took a while for Arrow to find out what had happened and
to regain some of its reasoning power. When it finally knew what
was going on, the situation looked grim: Endo was on the verge of
death, and Arrow had consumed a lot of energy repairing itself to
a certain extent, but no power supply seemed available anywhere
close.

The environment seemed equally strange. Some animals were
close by, but didn’t react to communication attempts. Finally, Ar-
row seemed to have found a way to contact Utrecht University, via
e-mail. The message was so strange that it not only crashed the mail
server, but also caused a power outage at the Computing Sciences

∗Department of Software Technology, Delft University of Technol-
ogy, e.dolstra@tudelft.nl
† Software Technology, ICS, Utrecht University, {jur, stefan, johanj,
andres, ariem, alexey, jcschie}@cs.uu.nl
‡ Open Universiteit Nederland, bastiaan.heeren@ou.nl
§ WWU Münster, clara.loeh@uni-muenster.de

department. However, would it not have been for this crash and the
investigation that followed, systems people might not have gained
interest in the strange mail.

The huge message, containing several attachments and data in
several unknown formats and languages, was shown around as a
curiosity and finally found its way to the machine of Johan Jeuring,
who together with some of his PhD students, started to look at it in
the little time they had next to organizing the ICFP contest.

For a long time, little progress was made. The only success the
group achieved, after quite a while, was the discovery of a sequence
of pictures hidden and encoded within the message. The algorithm
to decrypt the pictures was slow and running on just one machine,
so it took about three months to decode the complete sequence of ten
pictures (see Figure 1), which tell the story of Endo up to its arrival
on Earth.

Arrow wondered why no answer was coming in, but already
guessed that it might be difficult for the inhabitants of Earth to
understand what it wanted, and focussed its efforts solely on pro-
longing Endo’s life while preserving as much energy as possible.

On Friday, July 13, 2007, Alexey Rodriguez had an incredibly
clever idea on how to decode large chunks of the message, and this
turned out to be the breakthrough: large parts of the message were
suddenly clear, and by Wednesday, July 18, contact with Arrow
(via e-mail) was made.

Arrow’s desperate plan was to save Endo by changing its DNA
thereby adapting the Fuun to the conditions of Earth. Arrow usu-
ally could perform such an operation itself, but finding a suitable
DNA modification is a tricky business. Arrow simply did not have
enough energy to both come up with modified DNA and to admin-
ister the resequencing process.

Even then, considering the long delay after sending out the mes-
sage, it turned out that Arrow’s energy would run out sometime on
Monday, July 23, implying certain death for Endo.

Johan Jeuring and his group managed to assemble a specification
of how DNA resequencing works for Fuun, but it was clear that
they would not have enough time to look for a suitable modification
themselves. So as an emergency, they abandoned their original plan
for the ICFP contest and instead asked the international hacker
community to help to “Morph Endo!”

The Tenth Annual ICFP Programming Contest was a 72-
hour contest held July 20–23 2007 and organised in conjunc-
tion with the 12th ACM SIGPLAN International Conference
on Functional Programming (ICFP 2007). As in the previous
nine editions, the goal of the contest was to allow teams from
all over the world to demonstrate the superiority of their
favourite programming languages.

This year’s task was to construct a DNA prefix that makes
Endo live. The contestants were given a way to simulate
DNA synthesis in the form of an algorithm that generates a
2D-picture of Endo and its immediate surroundings from
a DNA string. Additionally, two images were handed out.



Figure 1: Arrival sequence

The “source” image in Figure 2 is the one corresponding to
Endo’s original DNA. The “target” image in Figure 3 is the
goal: concatenating the prefix and the original DNA should
result in an image that matches the target as closely as possi-
ble.

Prefixes were evaluated according to the following crite-
ria:

• the number of incorrect pixels in the resulting picture
compared to the target picture – the fewer, the better;

• the length of the prefix – the shorter, the better;

Figure 2: Source image

Figure 3: Target image

• the energy consumption of the synthesis, i.e., the time and
space complexity of performing the algorithm – in this
case only a limit was given.

In this report we describe the task, how to solve it, how
we created it, and how well the contestants did. In Section 2,
we have a closer look at Fuun DNA (and RNA) and the sim-
ulation algorithm that turns DNA into a picture. Endo’s DNA
has some peculiar properties, and Section 3 shows how that
structure can be used to obtain the target picture from the
source picture. We also discuss some alternative approaches
to producing the target picture. Section 4 shows the making
of Endo: it discusses some of the tools we built to produce
the task for the contest. In Section 5 we show how the con-
test went, give statistics about the participants, and reveal the
winners.

2. DNA and RNA

This section briefly summarises the contest task. The full
description can be found in (Dolstra et al. 2007a).

Simulating the synthesis of Endo from Fuun DNA is a two-
phase process. First, Endo’s DNA is converted into RNA using
a process called execution. Then, the resulting RNA is used
to build Endo and its immediate surroundings, or rather to
produce a two-dimensional image of it.



I, C, F, P match a literal I, C, F, or P, respectively
!n skip n bases
?DNA search for DNA string DNA
( p ) grouping: match pattern p and save the match

Figure 4: Pattern language

I, C, F, P insert a literal I, C, F, or P, respectively
ln insert saved group n at quoting level l
|n| insert the length of saved group n

Figure 5: Template language

Modifications of Endo such as requested by the task are
performed by concatenating a prefix to Endo’s original DNA,
and executing the resulting DNA.

DNA is a sequence where each element is one of four
letters (I, C, F, or P), called bases. Endo’s original DNA string
is 7523060 bases long. RNA is a sequence of commands, each
command being a DNA string consisting of seven bases.

2.1 Execution

Execution is a process that consists of one operation – a
match-replace – on the DNA string, that is performed repea-
tedly. In each iteration, the DNA string is inspected from the
beginning. The DNA is scanned until an initial segment is re-
cognized as a pattern. The rest of the DNA is then scanned
until an initial segment is recognized as a template. The rest
at that point is matched against the pattern. The part that
matches is removed and replaced by an instantiation of the
template. If the match fails, nothing happens.

While scanning for the pattern and the template, a special
three-base sequence III indicates that an RNA command is
to follow; the RNA command is then output immediately.

As long as the resulting DNA string of a match-replace op-
eration can be interpreted again as another match-replace
command, the process continues. If the end of the DNA
string is reached while scanning for the pattern or template,
the process stops. Executing Endo’s original DNA performs
1891886 match-replace operations before it stops.

The pattern language comprises constant patterns (literal
sequences of bases), skipping a non-negative number of bases,
searching for a certain sequence of bases, and grouping (Fig-
ure 4). Templates contain literal sequences of bases, but can
also refer to grouped parts of the DNA that the pattern has
matched, and query the length of such parts (Figure 5).

Quoting Encoding constant bases in patterns and tem-
plates requires an escape mechanism: it is necessary to dis-
tinguish a literal I from the pattern that matches a literal I.
At the very least, we have to know where a pattern ends.
Therefore, DNA uses a quoting mechanism in many places,
which works as follows:

I becomes C

C becomes F

F becomes P

P becomes IC

As a result, we know that if we are looking for a quoted
string, the sequences II, IF, and IP can never occur. Even if
a string is quoted multiple times, this observation remains
true. Sequences starting with one of those three pairs are

therefore associated with special meaning. For instance, IIC
and IIF both denote the end of a group, pattern, or template,
III indicates a subsequent RNA command, IP introduces a
skip in a pattern, and IF introduces a reference in a template.

When strings are reinserted into the DNA via template ref-
erences, one can choose an arbitrary quoting level at which
they should be inserted.

Here is a full example of a single execution step – let us
assume we have the following DNA:

IIPIPICPIICICIIF ICCIFPPIIC CFPC

For better readability, the above DNA is split into three parts.
The first two parts are interpreted as a match-replace opera-
tion which is then applied to the rest – the third part.

The first part is interpreted as the pattern (!2)P, i.e., start
a group, skip two bases, end a group, match a P. The middle
part is interpreted as the template PI00, i.e., insert PI, and
insert what was matched against the first group. The match-
replace command, which can be written as

(!2)P 7→ PI00

is now applied to CFPC, i.e., the remainder of the DNA. Two
bases are skipped, thus the group is bound to CF, and the
third base is a P, so the match is successful. The part that
has been matched – the string CFP – is then removed, and
instead, the template is instantiated (00 by CF) and inserted,
so that the final result is PICFC.

Numbers Execution also makes use of encoded numbers in
various places. A simple binary encoding is used, where I
and F both represent 0, C represents 1, and P indicates the
end.

Issues The DNA language as interpreted by the execution
process is a Turing-complete language. We have encoded
both an imperative and a functional (combinator-based) lan-
guage in DNA, which are described in Sections 4.4 and 4.5,
respectively.

Execution of Endo’s DNA makes extensive use of skip-
ping, matching and inserting large chunks of DNA, and given
the total number of iterations, efficiency becomes very im-
portant. It turns out that the central issue is the choice of a
suitable data structure. Some additional details are given in
Sections 3.2 and 4.2.

2.2 Building

After executing DNA, we end up with a sequence of RNA
commands. Although RNA commands are seven bases long,
only 20 commands have an effect on the resulting picture.
Other commands produced by Endo’s DNA are ignored and
have no documented effect (but see Section 3.4).

The 20 commands form an extended turtle control lan-
guage for generating a 600 by 600 bitmap picture. In addition
to the basic commands for moving the turtle one step for-
ward and turning it left or right by 90 degrees, there is sup-
port for changing the color, for saving a position, for drawing
a line between the current and the saved position, for flood-
filling an area of the picture, and for maintaining a stack of
pictures where the top-two elements can be composed in dif-
ferent ways, allowing alpha-blending and clipping.

Endo’s original DNA produces 302450 RNA commands,
of which 237484 are among the 20 “legal” RNA commands.
Performing these commands results in the source picture
shown in Figure 2.

Changing the color with a limited set of commands while
allowing a full range of 8-bit RGBA values is achieved by



maintaining a color bucket. There is one command to empty
the bucket, and there are ten commands to add different
base colors to the bucket. Each color can be added to the
bucket multiple times if desired. The currently active color
is then given by the average of all the colors in the bucket.
As a result of this approach, some RGBA values are very
cheap to compute, while others are very costly. For instance,
producing the opaque RGB color (254, 255, 255) requires 255
RNA commands.

3. Solving the task
To reiterate, the task for the contestants is to adapt Endo’s
DNA to life on Earth. This adaptation is in the form of a prefix,
a (hopefully) small piece of DNA that, when prepended to
Endo’s DNA and executed, produces the picture in Figure 3.
How would we proceed to solve this task?

Of course, we could ignore Endo’s original DNA entirely
and try to generate DNA that draws the target picture. Done
naively, this approach will take tens or hundreds of millions
of bases, but with a little care, this amount can be drastically
reduced. For example, adjacent areas with the same colour
can be drawn efficiently with a flood fill. Gradients in the
picture are trickier, but with some cleverness these too can
be drawn efficiently. Finally, we could write a DNA or RNA
compressor in DNA – maybe even a PNG decompressor! But
this approach has its limits: a PNG encoding of the target
picture is about 235 KB, which would amount to almost a
million bases, and then we would still have to include the
PNG decompressor.

3.1 Reverse engineering

Instead of trying to solve the task by means of the “brute-
force” approach given above, it is better to reuse the existing
DNA. After all, the target picture is quite similar to the orig-
inal picture in many respects. We should try to figure out
how Endo’s DNA works, then write a prefix that “patches”
the original DNA appropriately. For instance, the dome of the
flying saucer in the original picture looks very similar to the
“cup” in which the whale swims in the target picture. Maybe
we can find the bases responsible for drawing the dome and
prepend some rotation and move commands to transform
it into the cup. In fact, the task description hints at this ap-
proach:

It is hypothesized that, contrary to life on Earth, the
Fuun are a result of intelligent design. We believe this
because Arrow hints at the fact that there may be
“messages” from the creators in the DNA, and that
there may be genes already present that could help
with the plan to transform Endo.

3.2 Getting started

The task description also says that “something curious” hap-
pens if the prefix IIPIFFCPICICIICPIICIPPPICIIC is used.
Obviously, we should try this first. If our DNA machine is cor-
rect, we get a “self check” screen showing a number of tests,
each followed by “OK”. On the other hand, if some subtle
aspect of the specification is implemented incorrectly, then
some or all of the screen will be mangled, e.g., everything
drawn after a certain test will be rotated by 90 degrees.

Of course it is good to know that the machine is at least
partially correct, but it doesn’t really help us get further (ex-
cept that it is now clear that there are things hidden in Endo’s
DNA). So maybe we should look more closely at the DNA. It
starts with III – an RNA command. In fact, there are thou-

Figure 6: First field repair guide page

sands of RNA commands right at the start of Endo’s DNA,
before it goes off doing mysterious match-replace operations.
What does the RNA do? Here it really helps if the DNA ma-
chine allows us to step through commands interactively, like
a debugger – an indispensable tool for reverse engineering.
When we do, we see that a message is drawn before it is over-
written by a black flood fill:

IIPIFFCPICFPPICIICCIICIPPPFIIC

There are other ways to discover this prefix. In fact, it is even
possible to see the hidden prefix by accident if, for instance,
flood fills or bitmap operations do not work correctly yet;
or if the machine is just very slow (which was the case for
many contestants). This bit of DNA is another prefix, like the
one for the self check. And indeed, when we prepend it to
Endo’s DNA and execute it, we make a remarkable discovery:
the first page of the Fuun Field Repair Guide (Figure 6).

Apparently Endo’s designers – FuunTech Inc. on Rigel IV
– helpfully created information on repairing broken Fuun in
the field. The page shows two prefixes: a prefix that shows
the next repair guide page, and one that rotates the planet,
i.e., turns the picture from night into day. This prefix alone fixes
a huge number of pixels, although the survival chance (see
Section 5.3) only increases to 1.27% to reflect the fact that this
is far from enough to save Endo. About 160 teams managed
to discover this prefix.

Actually, the other prefix sounds even more interesting
– something about a catalog of repair topics – and indeed,
when used, it shows a repair guide page that describes how
integers are encoded in DNA, and suggests that one can ac-
cess other pages by taking a known repair guide prefix and
changing the embedded number to the number of the de-
sired page. It also mentions that the catalog has page number
1337.

This page presented a serious obstacle for many contes-
tants: the first page renders quickly even on slow DNA ma-
chines, but the second one (like the actual picture) takes an
excruciating amount of time if skips and template replace-
ment aren’t sublinear, as the task advises. Thus, contestants
would be stuck at this point unless they fixed the time com-
plexity of their machine. It certainly isn’t necessary to en-
gage in heavy bit-fiddling, hand optimisation or assembler
programming to get it fast enough: for instance, our straight-
forward, 347-line Haskell reference implementation using the



Figure 7: Repair guide page with strange terminology

right data structure takes about 50 seconds. Our optimised
C++ implementation took about 5 seconds.

Given that we have a DNA machine by now, we proceed to
disassemble a known repair guide prefix. Let’s take the prefix
for Figure 6. It disassembles to the following DNA operation:

(?IFPCFFP)I 7→ 00C

We use the notation pattern 7→ template to denote the DNA
string encoding the corresponding match-replace operation.
The above prefix searches for the base sequence IFPCFFP
(and binds everything up to and including that sequence),
then matches a single I; it then rewrites the matched DNA
string by putting back everything up to and including the
IFPCFFP, and writing a single C. Thus, it replaces a certain
I with a C. According to the description of the encoding of
numbers on the second help page, that would be changing
the number 0 to 1. To test this a bit further, we could look at
the prefix for the second page:

(?IFPCFFP)II 7→ 00IC

and indeed, this would appear to change 0 to 2.
According to the second page, we have to set the number

to 1337 to get access to the catalog page. The encoding of 1337
is CIICCCIICIC, and the necessary prefix would be

(?IFPCFFP)IIIIIIIIIII 7→ 00CIICCCIICIC

or, in concrete DNA,

IIPIFFCPICFPPICIICCCCCCCCCCCCIICIPPPFCCFFFCCFCFIIC

This prefix finally reveals the catalog page, which lists the
numbers of many other repair guide pages. With the same
technique as above we can now access all of them. Now we
are really getting somewhere. There are a lot of interesting
pages, although many are quite cryptic – a lot of talk about
red zones and green zones and blue zones (e.g. Figure 7), and
at least one page is “encrypted” according to the catalog.

Figure 8: Gene list (or symbol table)

There is one page in particular that looks very interest-
ing: page number 42 shows a “gene list” (Figure 8). For each
“gene”, it shows the size and offset relative to a special base
sequence. Alas, this is only the first page. But there is a colos-
sal hint in there: the gene named AAA geneTablePageNr. So
what if we constructed a prefix that searches for the special
sequence IFPICFPPCFFPP (the marker to which the gene off-
set are relative according to the gene table), then skips 0x510
bases (minus the length of the special sequence), and writes
a number? To write page number 10 would be, for instance,

(?IFPICFPPCFFPP!1283)!4 7→ 00ICIC

where !n denotes a skip over n bases. In DNA, this would be:

IIPIFFCPICCFPICICFPPICICIPCCIIIIIIC
ICPIICIPIICPIICIPPPCFCFIIC

Of course, this prefix has to be appended to the prefix that
sets the help page number to 42.

From the gene list we learn that there are hundreds of
these genes, although some entries in the gene table appear
to be damaged.

3.3 Improving the picture

Now we have enough information to try to find ways to im-
prove the picture. For instance, there are lots of apparent
variables in the gene table (like AAA geneTablePageNr). Per-
haps tweaking them will have some effect on the picture. Of
course, the more you know about the code (say, through trac-
ing or disassembling), the easier this becomes.

For instance, there is a variable polarAngleIncr, which, it
turns out, determines the rotation of the blades of the wind-
mill. How could you know? Well, the blades are rotated
slightly in the target picture compared to the original pic-
ture, which makes one hopeful that the vertices of the blades
are not positioned absolutely but are subject to some trans-
formation. Plus, there are sine and cosine tables in the gene
list. Finally, the call graph (see below) shows that the func-



tion windmill makes calls to drawPolylinePolar. It takes a bit of
experimenting, but it turns out that setting it to 5 gives the
rotation that matches with the target picture. The command
to do so is:

(?IFPICFPPCFFPP!823763)!3 7→ 00CIC

Other interesting variables include enableBioMorph (which
adapts Endo to the local ecosystem, though not necessarily in
the desired way) and weather (which enables various weather
patterns).

Not every change can be made by changing a variable. For
instance, some involve modifying DNA code in some way,
such as disabling certain bits of code or enabling dead code.
An example is removing the λx.x stuck in the windmill:

(?IFPICFPPCFFPP!5049987)!33 7→ 00
[
!727 7→

]
where [pattern 7→ template ] denotes the encoding of a
match-replace instruction in DNA. The encoding of this in-
struction is 33 bases, hence the !33. In other words, this prefix
places a skip of 727 bases at offset 5049987, which is the start
of the code that draws the lambda. Similarly,

(?IFPICFPPCFFPP!5043058)!33 7→ 00
[
!154 7→

]
causes the ducks to appear. The ducks, it turns out, are drawn
in a conditional: if true then nop else drawSomeDucks. The
skip jumps over the conditional to the else-branch.

3.4 Reverse engineering the DNA

One important secret of Endo’s DNA is the presence of cer-
tain undocumented RNA sequences. These RNA sequences
are of the form IIICFPICFP or IIICnnnnnn, where each n
is one of I, P, or C. A bit of analysis (plus a hint in the help
screen on “abnormal RNA”) makes it clear that the former
indicates a return from a function (a.k.a. “gene”), while the
latter indicates the entry of a function, where the ns denote
a unique function number in base-3 notation. Thus, these
RNA sequences reveal the exact dynamic call graph within
Endo’s DNA.

3.5 Memory model

When we step through the DNA code, and from the help
screens and the gene table, we should get a picture of the
operation of the DNA, which is useful – we have to patch the
code, after all. Endo’s designers – the misnamed FuunTech
– seem to have programmed Endo in an imperative language
called Imp. It is a useful language though: it has functions,
recursion, local and global variables, conditionals, loops, ar-
rays, and even pointers. Due to the strange properties of
Fuun DNA, the compilation scheme and memory model is
not quite the same as what we know from standard Von
Neumann machines. But there are many similarities, and it
is only a matter of understanding the FuunTech terminology.

The repair guide page in Figure 7 talks about several
“zones” in the DNA: red, green and blue, which appear in
the DNA string in that order. The blue zone (which “waxes
and wanes”) is just a stack: it contains return addresses,
local variables and function arguments (and there is even a
page on the precise layout of stack frames). The green zone
contains code and global variables. But DNA does not have
an instruction pointer – it can only execute instructions at
the front of the DNA string. So we cannot execute a function
directly within the green zone, since then we would lose the
function forever (plus all the functions and variables that
precede it).

That is where the red zone comes in: it is a copy of (the
remainder of) the current function from the green zone. A
function is called by copying it to the front of the DNA, i.e. the
red zone. The caller pushes the return address on the stack,
then discards its remaining code and copies the callee to the
front of the string.

A function returns by popping the return address from
the stack, discarding its own remaining code, and copying
the remaining code of the caller back to the front of the DNA
string. Here it has to know how much of the remaining code
of the caller to copy back. Therefore, an address consists not
just of an offset (relative to the start of the green zone) but
also a size in bases.

As each instruction is executed (appears at the front of
the string), the offsets of all functions and variables that it
references are statically known. This is because the compiler
for the imperative language knows the size of the remaining
“red zone” code and it knows the size of each object in the
green zone. Similarly, it knows the offset of the start of the
stack, and therefore of all variables in the current stack frame.

All of this means that we have to be very careful about
modifying DNA. We cannot insert code into the green zone,
since that would invalidate offsets. We have to be very care-
ful to also discard the current red zone code when calling
functions. And when we call a function from a prefix, we do
not have a return address in the green zone, unless we patch
the green zone first. Calling functions from a prefix is there-
fore tricky.

However, the Fuun engineers were aware of this difficulty
and provided a “function call adapter” that makes it easier
to call functions from prefixes. It is explained in detail in a
repair guide page, but essentially it just saves the current red
zone on a special stack (i.e., it saves the actual code, rather
than a return address in the green zone, which we do not
have when calling from within a prefix).

3.6 Secrets

Endo’s DNA contains many secrets that can help to produce
a short prefix fixing as many pixels as possible. There are
documentation pages for the imperative and functional lan-
guages used to build Endo’s DNA, an audio prefix, L-systems,
spirographs, a virus, easter eggs, and many more secrets hid-
den in the DNA. A brief description of the secrets can be
found in a technical report (Dolstra et al. 2007b).

The secrets in the DNA turn the contest into an adventure
style game, in which problems have to be solved at several
levels in order to produce a good prefix. Finding secrets and
using them to solve a problem requires advanced program-
ming skills, more than required for the development of the
DNA to RNA machine. Here participants can demonstrate
their excellent programming skills, or the advanced capabil-
ities of their favourite programming language.

The secrets vary in difficulty: some are very easy to find
and solve, others are much more difficult. Some of the easier
secrets are included to give away some helpful information
about the structure of the DNA. We expected the contestants
to find these secrets early during the contest, and we hoped
these would help the contestants to get started. An example
of such an early secret is the sequence of RNA commands at
the start of Endo’s DNA, eventually leading to the daylight
prefix and the catalog page. For this, the contestants had to
go through a sequence of four steps.

Once the catalog page is found (and the gene table listed
on this page), many more secret pages become accessible,
including the more difficult ones. In most cases, the chal-



lenging secrets correspond to the more valuable information,
such as cheap fixes for certain parts of the picture, or keys to
unlock some other information. To avoid giving some con-
testants an advantage, we included secrets about a variety of
topics, so that it is extremely unlikely that a contestant is an
expert in all of these topics. Although we carefully designed
the paths in which we expected the secrets to be explored,
we anticipated that the information could also be found in
unforeseen ways.

4. Creating the contest
We started thinking about ideas for the task in November
2005, but it wasn’t until August 2006 that we began to put
real effort into it. Various ideas were considered, but we
settled on reverse engineering alien DNA. We intended this
year’s contest to be a reverse-engineering contest: the idea
was to let contestants make debuggers, disassemblers, and
whatever other means they could come up with to under-
stand and repair Endo’s DNA.

4.1 Requirements for an ICFP programming contest

Organising an ICFP programming contest is a challenge.
To allow contestants to demonstrate the superiority of their
favourite programming languages and programming skills,
the contest should at least test language capabilities and pro-
gramming skills, and should require intelligent behaviour.
Moreover, we wanted many teams to get somewhere into
the contest, and at least a number of teams to get very far.
Finally, the contest should be fun!

Recent contests had thousands of contestants, working
from anywhere in the world, with very different back-
grounds. The contestants may use any tools they like, and
any information at their disposal. Furthermore, teams may
be of arbitrary size. These ‘contestant-friendly’ rules have
some important practical consequences for the organizers.

1. The programming task should not be easily solvable.

2. The programming task should not be solvable by using a
lot of computing power.

3. A solution to the programming task should not be lying
around (or for sale) somewhere.

4. We have to think about how to deal with the fact that
contestants are going to use many different programming
languages and compilers.

5. The solution space of the programming task should be
large: we don’t want many teams to submit the same,
correct or best, solution.

6. There should be a clear way to determine the winner of
the contest: the solution space of the task should have a
total ordering, preferably without a top (or bottom).

Our problem satisfied all of these requirements, except for
requirement 6: since the solution with the lowest score wins,
there obviously is a bottom. However, this bottom is very
hard to find, and the prefix that leads to the best possible
score is not even known to be unique. Indeed, it may well be
that the best score is obtained for a prefix that does not even
generate a pixel-precise image. At the moment we know that
the best score lies somewhere in between 1 and 3685, and
we conjecture it to be closer to 3685 than to 1. The problem
that contestants use many programming languages (require-
ment 4) is solved by designing our own low-level program-
ming language, namely DNA. Some of the previous contests
(2004, 2006) used a similar approach to this problem.

4.2 The evolution of DNA

The initial DNA language looked a lot like regular expres-
sions. We verified that all necessary programming features
– variables, loops, conditionals, stacks, functions – could be
implemented using regular expressions.

While programming in pure regular expressions is clearly
an idea whose time has come, it turns out to have some chal-
lenging implementation issues. The most vexing problem is
to make DNA evaluation efficient enough. Our original DNA
language relied exclusively on pattern matching to locate
variables and functions in memory. For instance, each vari-
able would be preceded by a unique “marker”, and could be
updated by searching for its marker and updating the suc-
ceeding bases, e.g.

(?ICFP) . . . 7→ 00IPI

to update the 3-base variable marked ICFP to IPI. However,
this means that every DNA instruction takes O(n) time in the
length of the DNA, which is much too slow1.

The solution is the skip operation, which allowed us to
have random-access memory while still retaining the flavour
of regular expressions. After all, a skip operation of n bases
is really just the regular expression . repeated n times. If DNA
is stored in a data structure like a rope (Boehm et al. 1995) or
even just a sufficiently short list of strings, programs can be
executed efficiently.

Still, Endo’s DNA would require a lot of arithmetic. Ini-
tially we used Peano arithmetic, which for some uses (such
as a small loop counter) is very efficient in DNA. But Peano
doesn’t scale very well, so we moved towards a binary en-
coding of numbers and wrote DNA functions to do addition,
subtraction and multiplication. As these operated at the bit
level, they were quite slow. We cheated once more and added
addition into the DNA specification in the form of the “length
of match” operation: to add natural numbers n and m, you
skip n and m bases within a group, then in the replacement
store the length of the group thus matched. However, this
fails when n + m is longer than the length of the DNA, which
is why Endo’s DNA starts with a mysterious list of instruc-
tions that “grow” his DNA to 224 bases.

But now subtraction was a bottleneck, so we used a final
trick and changed the semantics of DNA quotation such that
we could use it to do efficient subtraction. (Hint: in two’s
complement, x− y = x + (~y) + 1, so all we need is a way to
perform bitwise negation...)

4.3 Making pictures with RNA

The RNA language is inspired by turtle graphics (Abelson
and diSessa 1981), although ultimately our “turtle” is primi-
tive in some respects and advanced in others. We had many
debates about whether arbitrary directions should be permit-
ted (as opposed to just top/bottom/left/right), and whether
the specification should be pixel-precise (which would pre-
clude the use of floating-point numbers in the specification).
For a while we even considered specifying output in terms of
Scalable Vector Graphics (SVG). We added an alpha channel
and compositing operations to be able to draw nice-looking
images (see for instance the transparent backgrounds in the
repair guide pages). Floodfills were added to obviate the
need for an explicit polygon drawing operation.

1 This is exactly the problem that many contestants encountered if
they didn’t use an efficient datatype for DNA.



4.4 The Imp language

In terms of ease of programming, Fuun DNA lies some-
where between assembler and Turing machines. Therefore,
we made a simple, high-level imperative language called
Imp that compiles to DNA code. (Some code, such as the self-
check, was more-or-less written by hand.) The Imp compiler
is written in Haskell, and Imp programs are written as an em-
bedded domain-specific language in Haskell. Imp is a pretty
conventional C-like imperative language, except for some
tricky details. For instance, you cannot really pass a pointer
to a stack variable to a function, because pushing things on
the stack causes the addresses of stack variables to shift.

Here is an example of an Imp function that returns the
length of a string. Strings are sequences of 9-base integers,
terminated by the value 0xff.

stringLength =
comment "Return the length of a string." $
function "stringLength" intType -- return type

[stringArg "s" ] -- parameters
[ intVar "i" 0 ] -- local variables
[while ("s" !!! "i" 6= byte 0xff)

["i"←− "i"+ 1 ]
, ret "i"
]

Haskell functions such as while, ret, and function are combi-
nators that build the abstract syntax tree that the compiler
translates into DNA. We used operator overloading to be able
to write object-language expressions such as "i"+ 1.

Embedding the Imp language in Haskell obviates the
need for a grammar and parser, but more importantly, it
allows all kinds of meta-programming in Haskell. After all,
the full expressive power of Haskell is available to transform
abstract syntax trees at compile time. For instance, here is the
definition of a function that performs a bitwise increment of
an integer; note that the foldr essentially unrolls a loop that
iterates over the bits.

incInt = comment "Increment an integer by one." $
function "incInt" intType [ intArg "x" ] [ ]

[ foldr (λindex carryToNextBit→
iff (base "x" index ≡ encodeOneBit)

-- bit at index is 1, set it to 0 and go to the next bit
[base "x" index←− encodeZeroBit, carryToNextBit ]

-- bit at index is 0, set it to 1
[base "x" index←− encodeOneBit ]

)
Nop -- overflow; ignore
[0 . . (defaultIntLength− 2) ]

, ret "x"
]

We wrote quite a bit of code in Imp, such as arithmetic op-
erations, string operations, turtle graphics, RC4 encryption,
Hamming error correction, functions for drawing L-systems
and spirographs, and more. Also, the functions that draw the
Endo scene and the repair guide screens were generated from
a picture combinator language that translated into Imp code.

4.5 The Fuun language

The code that positions the fish is generated using a com-
piler for a functional language called Fuun. Like the Imp lan-
guage, the Fuun language is a DSL embedded in Haskell. A
nice detail of the embedding is that Fuun programs are stat-
ically typed by the Haskell compiler using phantom types.

Fuun is a call-by-name functional language, so expressions
are evaluated only if their values are demanded. It is not a
call-by-need language, so expressions are evaluated repeat-
edly rather than that they reuse previous evaluations.

4.6 Tools

We developed a lot of tools to generate, execute and analyse
DNA programs. For this, we used many programming lan-
guages: Haskell, C++, C, Java, Perl, PHP, and Ruby.

DNA machines We wrote implementations of the execute
function in Haskell (several implementations), C++ (several),
Perl, and Java. In the end, we decided to use the C++ version
for our submission system, but the Haskell implementations
were pretty fast as well. Some of these implementations of-
fered additional features to support basic debugging.

Renderers Renderers (the function build) were written in
Haskell and Java. For the submission system, we used a
Haskell/C implementation: we used Haskell’s Foreign Func-
tion Interface to communicate with the libpng library to do
some low-level bitmap operations. The algorithms for draw-
ing lines, doing flood fills, and composing bitmaps were also
implemented in C. This renderer also supported a debug op-
tion to see some intermediate bitmaps.

Being essential to our contest, the renderers and the DNA
machines were implemented in different languages and by
different people (N-version programming), to increase our
confidence that (1) the machine specifications were correct
and unambiguous, and (2) both machines could be imple-
mented with comparable effort in a variety of languages.
For example, if different people, using widely different lan-
guages, can implement a renderer from the same specifica-
tion, and experiments show that these give exactly the same
results, then this increases our confidence that (1) holds.

Picture combinators We designed an embedded domain-
specific language to compose pictures from primitive ele-
ments such as texts and circles. This combinator library was
written in Haskell, and was used to describe the source and
the target picture, as well as all the help pages. It supported
both relative and absolute positioning, allowed us to apply
some gradients to elements, and to rotate and scale parts of
a picture. Picture description in this EDSL were translated to
the Imp language and from there into DNA.

Font generators Endo’s DNA sequence contains 3 embed-
ded fonts such as the well-known Tempus. In fact, these fonts
were embedded several times in various sizes and in differ-
ent styles (e.g., italic). We made a tool in Java to translate an
existing font by turning its characters into RNA commands.
Border pixels are drawn semi-transparently to achieve some
anti-aliasing, which is essential for the readability of the
smaller fonts. We also included the Wingdings font and used
this for the help page on viruses.

Curve tool We wanted some of the picture elements to be
cartoonish (such as the cow), and for this we implemented a
simple tool for drawing curves interactively. This tool was
written in Haskell using the wxHaskell GUI toolkit. The
curves were approximated by quadratic Bézier curves, which
were then rendered to a collection of points.

Image tools A couple of tools were developed (in Haskell)
for embedding images. The first tool simplifies the images:
colors are slightly changed to simpler colors (requiring fewer
RNA commands) and larger areas of one color are created by
merging areas that are sufficiently close to each other. The



degree of simplification was determined for each of the im-
ages individually. The second tool converts the image to a
sequence of RNA commands. Connected areas of one color
are determined, the border is drawn (only where it is really
necessary), and if needed, some flood fills are performed.
The order in which the areas are dealt with highly influ-
ences the number of RNA commands. A few simple heuris-
tics were used to determine the ordering. The last tool turns
a list of RNA commands into DNA commands and performs
some compression. All RNA commands are mapped to nat-
ural numbers: the more occurrences, the lower the natural
number. A simple combinator, written in DNA commands,
can turn the natural numbers back into RNA commands.
The compression ratio is acceptable: although higher ratios
could be obtained, a requirement was that decompression at
execution-time should be reasonably efficient. The following
table shows for two embedded images the sizes before and
after simplification (number of bytes in PNG format), the
number of RNA commands, and the number of DNA bases:

image before after RNA DNA

world map 95111 30687 111350 246500
contest team 284158 58634 226020 455133

Call graph A small Ruby script (88 loc) visualises the call
graph by inspecting the undocumented RNA commands,
linking them to the symbol table.

Strings tool We wrote a simple tool in Haskell that finds all
(quoted) strings in a piece of DNA. Care was taken that not
too much information could be found in this way.

Web submission system Teams used the web system to
monitor their progress, and the progress of their competi-
tors, thus stimulating competition. Each team could submit
a prefix at most each ten minutes to receive a score, see an
overview of the scores of all their submits, and view the ren-
dered result of their prefix with the best score (highest sur-
vival chance). The scoreboard, visible for everyone, shows
the teams ranked by score, with the top 15 in random order
and without a score.

The web system consists of two parts, both written in
PHP; the front-end and the back-end. The front-end stores a
submission in the database and the back-end retrieves it, exe-
cutes the prefix, generates an image, stores it in the database,
and scores the image. Because this back-end cycle takes ap-
proximately 20 seconds with our implementation and we re-
ceived more than three submits per minute, we needed to
run multiple instances of the back-end. We ran instances of
the back-end on 18 machines, which resulted in an average
waiting time of 5 seconds.

4.7 Encouraging reverse engineering

We realized that this programming contest could be solved
in many different ways. Although we didn’t want to limit
the various approaches too much, we took some measures
to make reverse engineering more attractive, compared to a
brute-force approach. The target picture contained an “anti-
compressant” (a Moiré pattern) which some people actually
did manage to clone. The target picture contains several gra-
dients that are difficult to draw.

Many people have wondered why RNA commands have
such an inefficient encoding (ten bases for just 20 com-
mands). This was to penalise attempts to simply draw the
target picture using brute force by drawing it with just RNA
commands.

#teams Countries

130 USA
35 Japan
33 Germany
30 France
29 Russia
15 UK
10 Australia, Ukraine

9 India, Sweden
7 Canada, Netherlands
6 Belgium, New Zealand
5 Austria, Belarus, Latvia, Switzerland
4 Finland, Italy
3 China, Ireland, Norway, Spain
2 Denmark, Greece, Hungary, Israel, Poland, Sin-

gapore, Slovakia, South Africa
1 Bulgaria, Colombia, Romania, South Korea, Tai-

wan, Thailand, Uzbekistan

Table 1. Countries of team members

5. The contest
The contest took place from 12:00 (noon) CEST on July 20
2007 till 12:00 on July 23, giving contestants 72 hours to
save Endo’s life. Teams were not required to pre-register, but
could do so. There was no limit on team sizes. Teams with
members associated with the Information and Computing
Sciences department of Utrecht University were allowed to
participate, but were ineligible for any of the prizes.

Teams could submit DNA prefixes any number of times
during the 72-hour period, with a ten minute waiting period
between submissions to prevent overloading the server, but
also to make sure that teams did not use our DNA machine
as an alternative to constructing their own. This was also the
reason why we did not allow teams to register twice.

Each submission was immediately evaluated by our sub-
mission system. The score of the submission was then re-
ported back to the team. Also, a rendering of the best sub-
mission of the team so far was shown. We didn’t show each
team’s latest submission, again to prevent teams from using
our submission system as a substitute for writing a DNA ma-
chine. Teams were judged on the basis of their best submis-
sion over the course of the contest.

5.1 The contestants

869 teams registered before and during the contest. Ulti-
mately, 357 teams submitted at least one prefix. The average
size of the submitting teams was 2.6 members.

Teams were asked to specify their physical locations.
Some teams were distributed across countries or even con-
tinents. Table 1 lists how many teams had members in each
country, for those teams that gave this information. There
were 137 teams with members in North America, 1 in South
America, 55 in Asia, 188 in Europe including Russia (with
136 in the European Union), 16 in Oceania and 2 in Africa.
Incidentally, Africa was the continent with the highest per-
centage of winning teams.

Teams were not required to submit source code and other
contest materials unless they wished to be eligible for a prize
(in particular the Judges’ prize). Thus, we cannot make cer-
tain pronouncements regarding the programming languages
used by teams. However, teams were asked to specify the
languages they used on their team information page, which
they could change during and after the contest.



#teams Language(s)

81 C++
67 C
66 Haskell
64 Python
52 OCaml
48 Java
35 Perl
26 Ruby
22 Lisp
22 C#
17 Scheme

9 Unix shell (sh, bash)
8 D
5 PHP
4 Erlang, Delphi
3 ML
2 AWK, Fuun DNA, LOLCODE, Lua, Octave, Pro-

log, Refal, Scala
1 2D, Basic, Blub, Brainfuck, CWEB, Cobol, Dylan,

Emacs Lisp, Excel, FP, F#, Grep, Hub, MUMPS,
Nemerle, PL/I, Pascal, R, Sed, Silcc, Smalltalk,
Unlambda

Table 2. Languages mentioned by the teams

Table 2 shows how many times languages were men-
tioned by teams. Some entries may need to be taken with a
grain of salt. Imperative languages continue to dominate the
field. Haskell and OCaml are the most popular functional
languages by some margin. Interpreted languages are also
popular.

5.2 During the contest

As described before, teams could submit entries every ten
minutes, but only the result of their best submission would
be shown. This discouraged teams to submit anything but
their current best prefix to us, and our data on how the
contest proceeded from the perspective of the participating
teams is limited.

Teams started submitting shortly after the contest opened.
Team escape started very early submitting seemingly ran-
dom strings of relatively short length (mostly length 200 or
100) nearly every ten minutes – they submitted 273 times
throughout the contest. Most of these pictures resulted in a
completely black or a completely white square.

During the first hours we often saw the prefix given in
the task description that produces the reference output for
the self check. This picture could actually be seen by the
contestants as it results in a slightly better score than the
beginning picture.

Teams were then obviously trying to come up with im-
plementations of the DNA machine, since this was necessary
to get to the first help screens and the “daylight” picture. The
daylight picture produced the first noteworthy improvement
in score, and the first team to submit this prefix of length 28
was camelimelo, seven hours into the contest. After twelve
hours, eight teams had submitted daylight.

After 15 hours, team Smartass was the first to improve
on the daylight score by finding a prefix of length 27 that
results in the same picture, improving their score by 1. In
the remaining time of the first day, we saw teams submitting
some help screens, and teams trying brute-force approaches,
but none of this was leading to any measurable success yet.

After 24 hours, team PurelyFunctionalInfrastructure had also
found this shorter prefix, and more than 20 teams had found
the daylight picture, thus the first teams with a non-zero
chance of Endo surviving became visible on the scoreboard
(the top 20 were shown without score and in random order).
Since Endo would never have survived after only 24 hours
of work and we had essentially a tie at the time, we decided
not to hand out the “lightning division” prize.

The first significant improvement over daylight was sub-
mitted by PurelyFunctionalInfrastructure 36 hours into the
contest: they managed to change the color of the cargo
box correctly. Only six minutes later, United Coding Team
changed the trees correctly and then ranked second. After
four more hours, a few more teams were beginning to im-
prove upon daylight. One of them was jabber-ru, one of the
most successful brute-force teams. Team jabber-ru tried to
approximate the target picture with hand-drawn polygons.
Despite being a one-man team, he submitted very often,
making small incremental improvements to his picture all
the time, sleeping at most a couple of hours during the con-
test. Figure 9 shows the score development of the top teams
from hour 35 on.

We kept the contest office manned by at least two persons
throughout the contest at all times. We monitored the sub-
missions, looked at discussions taking place on the internet,
and answered questions on the official mailing lists. Some
clarifications regarding the task description were asked for,
but, fortunately, no bugs were found. The submission sys-
tem was offline once for about fifteen minutes, but worked
flawlessly for the rest of the contest. We realised that imple-
menting the DNA machine was providing a bigger hurdle for
the teams than anticipated. After multiple requests, we there-
fore decided to publish an execution trace of the first ten it-
erations of Endo’s DNA online, in hour 37.

After 48 hours, a small number of teams was fiercely
competing for the top spot. Teams pursuing brute-force
approaches were competitive with those reusing the given
DNA, but at most times, one of the reusing approaches was
leading. It was not at all obvious who would win.

In hour 49, the first teams were beginning to discover
the Biomorphological Unit (BMU) and playing with different
shapes of Endo.

At the same time, slowly, more and more teams found
daylight. However, even after 55 hours, there were still less
than 20 teams with a score higher than daylight. We no-
ticed that in certain discussion channels frustration rose be-
cause the scoreboard still did not show a single team that
had achieved more than the daylight score. In order to give
away at least this positive message, we decided to lower the
amount of hidden scoreboard entries from 20 to 15.

This step also made the 27-length daylight prefix widely
known for the first time. Until then, six teams had found this
small variation. After the knowledge about the score became
public, several teams managed to come up with this prefix as
well – 14 of them within the next hour.

Shortly thereafter the first teams having significantly
higher scores than daylight appeared in the public part of
the scoreboard, thereby sparking some optimism among the
teams.

In hour 65, team cultboundvariable managed as the only
team throughout the contest to submit a prefix that produced
the target picture exactly. However, the prefix was more than
seven million bases long, thus the score was not competitive.

The last few hours of the contest were by far the most
exciting. Several teams managed to get significant improve-



Place Score Survival
chance

Team name

1 178246 90.22% Team Smartass
2 224623 84.92% United Coding Team
3 293898 75.59% Celestial Dire Badger
4 321617 71.52% ryba
5 358246 65.98% PurelyFunctionalInfrastructure
6 453744 51.32% jabber-ru
7 498781 44.66% Begot
8 514121 42.47% Basically Awesome
9 543163 38.45% SwtPl

10 608964 30.07% shinh
11 682894 22.07% SzM
12 819614 11.34% kuma–
13 862213 8.99% Unknown?
14 865556 8.83% voyo
15 872788 8.47% kokorush

Table 3. Top 15 teams

0

200000

400000

600000

800000

1000000

1200000

1400000

 35  40  45  50  55  60  65  70

S
co

re

Hours passed

Team Smartass
United Coding Team
Celestial Dire Badger

ryba
PurelyFunctionalInfrastructure

jabber-ru

Figure 9: Scores of the Top 6 during the contest

ments of their score shortly before the end of the contest.
Most amazing probably was Celestial Dire Badger who made
a few big leaps within the last ten hours. Several teams, in-
cluding Team Smartass, discovered that simply eliminating
incorrect elements of the source picture already improves the
score significantly, which is part of the reason that the win-
ning picture looks relatively empty.

5.3 The winners

Table 3 lists the scores and survival chances of the best 15
teams. A team’s score is the length of its best prefix, plus the
number of incorrect pixels in the generated image times 10.
The survival chance is defined as 100 e−1 (0.000018 score)2

.

Judges’ prize While the first and second prizes followed di-
rectly from the teams’ scores, for the Judges’ prize we looked
at the materials that 31 teams submitted. We were looking in
particular for clever techniques and tools that resulted in a
good score.

Quite a number of teams were using various brute-force
approaches to draw Endo. Of these, Celestial Dire Badger
(using OCaml and C++) had the most elegant approach.
He combined a more-or-less brute-force approximation of
parts of the target picture (with increasing resolution in the

final hours of the contest) with a re-use not of Endo’s DNA
but its captured RNA output, as well as a compressor for
the generated DNA. This resulted in the third-best survival
chance (75.59%). Therefore the jury is happy to declare that

Celestial Dire Badger (Jed Davis) is an extremely
cool hacker.

Second prize The second-best survival chance of 84.92%
was achieved by United Coding Team (Cape Town, South
Africa). The team used various languages to implement tools
to execute, reverse-engineer and debug Endo’s DNA and to
generate prefixes: Python, C++, Unix shell scripts, but pri-
marily Perl. Therefore the jury is pleased to declare that
United Coding Team has proven that

Perl is a fine tool for many applications.

The members of this team were Richard Baxter, Marco Gal-
lotta, James Gray, Carl Hultquist, Alexander Karpul, Ju-
lian Kenwood, Bertus Labuschagne, Hayley McIntosh, Bruce
Merry, Max Rabkin, Ian Saunder and Harry Wiggins.

First prize The best survival chance during the contest,
90.22%, was accomplished by Team Smartass (Mountain View,
California). They used C++ to implement the DNA/RNA
simulator and for various reverse engineering tasks, as well
as Python for reverse engineering and generating prefixes.
The team identified C++ as the primary language used for
the contest. The jury is thus honoured to declare that Team
Smartass has demonstrated beyond doubt that

C++ is the programming language of choice for
discriminating hackers.

This team consisted of Ambrose Feinstein, Christopher Hen-
drie, Derek Kisman and Daniel Wright. Team Smartass also
won the 2006 ICFP Programming Contest.

5.4 Aftermath and reflection

In his posting of July 24, 2007, Marco Gallotta (http://
marco-za.blogspot.com/2007/07/icfp-how-we-reached-top-15.
html) provides a list of dozens of blogs related to the contest.
This list includes post-mortems of all teams that ended up in
the top ten. Together, these blog messages give a good idea of
the experience of participating in the contest. Furthermore,
we observed that most of the secrets we included in Endo’s
DNA were discovered.

The blog messages often not only discuss technical issues,
but also an evaluation of what the participants liked and dis-
liked. Based on these messages, and other reactions we re-
ceived after the contest, we found that reactions to the con-
test were mixed. The majority of the reactions was positive
to very positive, in particular from the teams that did well in
the contest. Still, participating in the contest was not a pleas-
ant experience for everybody, with some blaming the contest,
some blaming themselves. We had hoped for more teams to
get further than they did. In retrospect, having a few more
easier secrets to solve would probably have helped in this re-
spect. We discuss some negative opinions found on the web:

• Too many puzzles, too little programming: programming was
needed to find the secrets (the puzzles) and implement
the solutions. Typically, programming was not needed to
solve the puzzles.

• The organizers show off themselves: we take this comment
to mean that we provided too many puzzles on widely
different subjects. We indicated earlier in this report why:

http://marco-za.blogspot.com/2007/07/icfp-how-we-reached-top-15.html
http://marco-za.blogspot.com/2007/07/icfp-how-we-reached-top-15.html
http://marco-za.blogspot.com/2007/07/icfp-how-we-reached-top-15.html


if you stick to one or two complicated puzzles, you risk
that somebody happens to know a lot about these. The
alternative is to devise a whole new field with its unique
problems and puzzles that nobody knows about. This
was certainly beyond our capabilities. In the field repair
pages we hinted at what subjects might be needed to
solve the puzzles. Resourcefulness, which includes some
clever programming, and access to the Internet on the
part of the contestants were supposed to provide the rest.

• This was not a language contest, but an intelligence contest: we
think it has elements of both. The machine could be im-
plemented efficiently in many languages, using the right
data structure. But the DNA machine was only a prereq-
uisite to run prefixes. The real goal, from our viewpoint,
was to produce disassemblers and debuggers for DNA.
Here contestants could show that their language was suit-
able for the reverse engineering task.

Since we did not put a limit on the size of teams, we
were happy to see that the size of the teams did not seem to
correlate with how they scored: the three prizes we handed
out were for a single-person team, a team of moderate size,
and a very large team.

One thing that struck us during and after the contest,
reading IRC channels and blog postings, was that many
programmers have little confidence in their favourite (func-
tional) language: when they realised that their implemen-
tation of the DNA machine was too slow, their first instinct
was often to switch to a “faster” language such as C. But
the problem here wasn’t the language but algorithmic com-
plexity: a straight-forward Haskell implementation using the
right data structure, such as Data.Sequence (Hinze and Pater-
son 2006), would be fast enough and outperform by several
orders of magnitude an optimised C implementation using
an unsuitable data structure. So programmers should worry
less about languages and more about complexity.

Quite a few blogs showed that people continued to work
on the contest after the deadline passed, as witnessed by for
example the submission of Jochen Hoenicke of team SwtPl
(see Appendix A). Furthermore, we have seen libraries ap-
pear that would have been useful in the contest: pattern
matching in Haskell’s bytestrings, and finger trees in OCaml.

As far as functional programming is concerned, func-
tional languages didn’t fare too well (although in the Top
15 there were five users of OCaml and three of Haskell).

5.5 So what happened to Endo?

Thanks to the hard work of the contestants, Endo survived.
It joined us on our trip to Freiburg to say ‘thank you’ to the
contestants present at the conference.

Acknowledgements. We would like to thank several peo-
ple that helped in organizing this contest. Atze Dijkstra and
Doaitse Swierstra participated in our early brainstorming
sessions. Chris Eidhof, Maaike Gerritsen, Jeroen Leeuwe-
stein, Eelco Lempsink, Martijn van Steenbergen and Mark
Stobbe tested an early version of the problem, and helped
extending it. Eric Bouwers, Thomas van Noort, Sander Mak
and Michiel Overeem tested the second version of the prob-
lem. The systems people at the Information and Computing
Sciences department of Utrecht University kindly provided
us with an environment in which we could set up and run the
contest. The Information and Computing Sciences depart-
ment of Utrecht University provided us with the necessary
facilities for the contest. Jonathan Jeuring supported Endo to
the end.

References
Harold Abelson and Andrea diSessa. Turtle Geometry: The

Computer as a Medium for Exploring Mathematics. MIT Press,
1981.

Hans-J. Boehm, Russ Atkinson, and Michael Plass. Ropes: an
alternative to strings. Software—Practice and Experience, 25
(12):1315–1330, December 1995.

Eelco Dolstra, Jur Hage, Bastiaan Heeren, Stefan Hold-
ermans, Johan Jeuring, Andres Löh, Arie Middelkoop,
Alexey Rodriguez, John van Schie, and Clara Löh. Morph
Endo! Task Description of the Tenth Interstellar Contest
on Fuun Programming. Technical Report UU-CS-2007-
027, Department of Information and Computing Sciences,
Utrecht University, 2007a.

Eelco Dolstra, Jur Hage, Bastiaan Heeren, Stefan Hold-
ermans, Johan Jeuring, Andres Löh, Arie Middelkoop,
Alexey Rodriguez, John van Schie, and Clara Löh. Morph
Endo! Report on the Tenth Interstellar Contest on Fuun
Programming. Technical Report UU-CS-2007-029, Depart-
ment of Information and Computing Sciences, Utrecht
University, 2007b.

Ralf Hinze and Ross Paterson. Finger trees: A simple general-
purpose data structure. Journal of Functional Programming,
16(2):197–217, 2006.

A. Best solution
The following 3685-base prefix was supplied by Jochen
Hoenicke of team SwtPl after the contest. It is a perfect so-
lution: it produces the target image exactly. It has a survival
chance of about 99.9956%. The best prefix that the organisers
made before the contest scored a meager 45.3%.

IIPIFICCFPIICIICIPPPIPPPIICIPCCCCCICICPFCIIPIFICCFPIICIICIPPPIPPPIICPIIPIFICCFPIICIIPIFIIC

IICIIPIFIPIICIIPIFIPIICIICCCICCICFIFCPCCPCCFCCICCICIFPCPCICFIFCPICPCCFCICFIFCPCCPCCFIFCPPI

FCPPCCICFICCPICFICCPICICCCFIICFCPIPPIIPCCCPFCCCPFFICCCFCPCFCFCCFCPIICFCCFCPICCFCCFIICPPCPF

FFIICPPPIIPCPIFCCCPPFPCCCCCIIIIIIIIIIIIIIIIIIPICCICIICPIICIICCIPCCIIICCIPCICCICIIPICCICICI

PICCIIICIPCICCICIIPICIIIIICPCIIIIICIPCICICICIPIICIIICIPCICCICIIPCIICIIICPCIICIIICPCCCCCCCC

PIIIPICPCPCPPCPCFPIFIIIIIICCCCCCCCCPCCCCPPFIFCICIIIIIICPIICCCPFFPPPICFIFCCIPFFCCCCPCFFCPII

PCFFICCPFFCICPIFFPCPCFFCIIIIIFFIPICPCFFCICCCPFFCCFFCPIIPFFICPCFFCCPICCCCPIFPFCICCIFPFIIIII

CFFIIPPIPIPFIFPPICCCPPICPIICFCCPFPCCIIIIIICCPIICIIIIIIIPCCPIIICPCPCFFCFFCPICPIIIFFIPPIIFFI

CPICFFCPPIIICCFFIICFFCCPCPCFFCPIICFFICCCCPCFFICCPFFCCPICPIPIIIIPFIFCFICPIIIFFPICPCCCCPICPI

IIIFPFFFFFFPPIFPFCCCCCPICPCCCCPIIIFIPFCICCICICCCICCPPPIIICFFIIICPCPPPPIIFFCCPPIPIPCCCCCCCP

FIPFFFCCCCCCFCFIIFPFCFFCFIIPPCPIICCCPCPFFFFFFIPPICCPCFPFCCCCCPPIICCPFIIFPCFCFFFPCCPFIFFFCC

PPCCCPFIIFFCCCFCCICCCPFIFCFFPICCPCPIPIICPFIIPFFPFCCCFIIFCPCPPPFPIIIFFPIFIPFPPIICFFICFPPICC

FFCPCFFFPCFFFIIPCPIIIIPCCPFFCPIPFPFFCCFCIIIPIFIFCFCIIIPPIIPIFFIFIFIIIPICPCPPCCFCPFFCFCFCFC

CPIIIFIIFFCFFCCFIPCCCPICFIIFFFCCCCFPFIFFFCCFIIFCCCFFFCPFIFCCCIIIPPPIFPFFFCFCIFFCIPIIFPFCCF

CFIICCPIIPFIPFCCCFCCCFFFFCPIICFIPFCFCFFFCCFFCPPPIFIIPFIICCCICICICCCICCIICICIICPFIIIFCCIICC

CCIIIIIICFIIPFICCCIIICCCICICCCCCIIICIIPCPIPCCCPFPFCFCFFCCCCPCFPFFCCFFPIPCPFIFIPPIPICCCPFII

FFFFCFFCCCCCPCFIFCFFPIIPIFPIFIIICCCICCICICIIFPFICIICIFPFPICICPFIFIICPCFCPFCCCIICICCFPFICCC

ICFIFCCIIPCCPCPFIIFCCFFFCCCCCCPFIFCFCPCCCPIPCCFFCCPCFPFCCFCFCFPFCFFCFCFPFFCCFFPCFFFCFPFCCC

FCCFPFFCFCCPFIFFCCCFPFFFCCCPCPIICPCFIIPFIIICIICIICCCCCCCIICCIICPICCFCPFICCCICICIPFIFCCCPIP

FPFCPIICPCPCCCPPIIPPFPFFFFFCIPIICFIIFCFCFFCCPPPICFPFPFFFFIFIFIIICCCCCPFIIFIPFFFFFPIPICPCPI

PICPFIIFFCCFFCCPCCCPIICCFPFFFFCFIIPICPFIFCFCPPPCPCFIFFCCCCPICPFPFCCFCFPPIIIPIPCPCPCFFIPPPC

CPPIICPCFPIIFICFCFCFCFCICCFFCFCFCICFCCCFFCFIPIFCFFFFCCICFCCCCCCFICFFFCCFFCPPFPFCCFFCIFIFFF

FPPPIIFIIPFCFFFFFCFFFCCFCFCFCFCCFIIICPIIPFCPFCCCIIICPIIIPPIIIPCFPPFFFCFFFFCFCCFCFCFFFFCCPI

PIIPFIFIICCFPFPIICIPIPPICCPIIFICPFPICCIICCIIICPIICIICCPPICCPFIIFCICCIICIIPIIFIFIICCPIIPIPC

CCCPCFFCPIIIFIIFFFFFCCCIIPCCCPIPFIFFFFCFIFFFFCCCPIFIPFFCFCFCCFFFFCCCCPFIFFFFCFFFCPPIFCPPFF

FCCCCCFCCFCFCCCCCFCCFFICFCFCFFCFCCCCCCFFICPCCCPCPIIIIIIFFPIIPICPPCFIFFFCIPIICPCFFFIIIIICFI

FCFFFIFFFCICPIPIFFFPIIICFPFCCCFCPIICCPIPFPFFCFCFPPICPCCFPFCCFCCIPIIFIPFFCFCCCFCFFCPPPCPIIF

IIFCCFFFFCPCCCPIIIICPIICFPFFCFCFIIIIIFPFFCCFCPIPIIIICFIIFCFCCFFCCPIIFCPFPFCCFCFCFIPPCPIFFF

FFCIIIIIPPIIFIFCCFIIIPIICPCFFIIPCCPPFFIIIPICCCPICPCFFCCPCPIPIFIIPIFCCCIIIIICICIICCCICIPIIP

IPIICICICICIIPIICIICIICIPPPIPPCPCPIPIPICPCCPCFPFCIICIPPIPPCFIIIFIICICIICICIIICCIPIICCCPPIF

IIFCCCCCCICCCPFIIFICCCIICCIIPCCICCICIICPFCIIPIFIFPCCFIICIICIPPPIPPPIICPIIPIFICCFPIICIIPIFI

ICIICIIPIFIPIICIICCCICCPCICCFCCFFCFCCFFFCFFCFFCCICICFFPFICFICFFPFCFCFCFFFPCPICICFCFFCFFCFF

FFFFFCCFCCICCICIFCPICPCICFFFFFFFFFFFICCCFCCFFFCFFCFPPFPCFFFPFICFFPFFCFFCFIPCPCPFICFPICFFPF

CFPPFPCFFFPIPICPPIPICPPFFCFPCFFICCFPCFFICPCFCFFFPCCICICCPICICCCFIICFIICCCCIICCIICCCICCCCIC

CPCPIPFIIIIPPFFICFIFIIICFCCPFPCFCPCPFIPIICFIIFICFICFPCFICFCCFCCFPCFIFICFICFICFFICFIFPICFII

IFICCFCPFCFIIFCFIPFICFCFIICFCFPCFFCCCFIIFIICCFCPFIICFIIFICFIIIFPCFPIFCFIIIFCFIIIFFPFPFIIPF

CPFPPFIIIFIPFCPFIIIFPPFPFPIFCFIPIFFPFCFCPFICFPIFCFIIFICCFIPFCCFCPFIPCFIIFPCCFIFICCFFPCFIIF

CCFPIFCFIIFIFIPIFIIFCPFCPFPIFIIFIIIFPIFIIIFICFPIFCFPFCCFCCPFFIFICFCPFCPCFPIIFCPICFPCPFIFCP

FPFPIFCPFPIFIPFIPFPIFPFPFPFPIFIFIFPFFIFCFIPFICFCFFIFIICFCFPPFPPFCIIIPIPIICICCICPIICIIPIPCI

CCPFIICICIICCCICCICCCFCCCFCFCFFCCCCFCCCCFFICCCICCICFICCICIPPCPICCCFCCFCICFICCCICCICCIPCPCP

ICCCICCICFICCCFCCFCCFIPCPPIPCPPCCICICCPICFICCPICCFICCPICFFICCCFIICICIICIICICCIICPIIII


	The story so far
	DNA and RNA
	Execution
	Building

	Solving the task
	Reverse engineering
	Getting started
	Improving the picture
	Reverse engineering the DNA
	Memory model
	Secrets

	Creating the contest
	Requirements for an ICFP programming contest
	The evolution of DNA
	Making pictures with RNA
	The Imp language
	The Fuun language
	Tools
	Encouraging reverse engineering

	The contest
	The contestants
	During the contest
	The winners
	Aftermath and reflection
	So what happened to Endo?

	Best solution

