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Abstract. Generic programming (GP) is a form of abstraction in programming
languages that serves to reduce code duplication by exploiting the regular struc-
ture of algebraic datatypes. Over the years, several different approaches to GP
in Haskell have surfaced. These approaches are often similar, but certain differ-
ences make them particularly well-suited for one specific domain or application.
As such, there is a lot of code duplication across GP libraries, which is rather
unfortunate, given the original goals of GP.
To address this problem, we define conversions from one popular GP library rep-
resentation to several others. Our work unifies many approaches to GP, and sim-
plifies the life of both library writers and users. Library writers can define their
approach as a conversion from our library, obviating the need for writing meta-
programming code for generation of conversions to and from the generic repre-
sentation. Users of GP, who often struggle to find “the right approach” to use, can
now mix and match functionality from different libraries with ease, and need not
worry about having multiple (potentially inefficient and large) code blocks for
generic representations in different approaches.

1 Introduction

GP can be used to reduce code duplication, increase the level of abstraction in a pro-
gram, and derive useful functionality “for free” from the structure of datatypes. Over
the past few years, many approaches to GP have surfaced. Including pre-processors,
template-based approaches, language extensions, and libraries, there are well over 15
different approaches to GP in Haskell [7, Chapter 8]. This abundance is caused by the
lack of a clearly superior approach; each approach has its strengths and weaknesses,
uses different implementation mechanisms, a different generic view [4] (i.e. a different
structural representation of datatypes), or focuses on solving a particular task. Their
number and variety makes comparisons difficult, and can make prospective GP users
struggle even before actually writing a generic program, since they first have to choose
a library that is appropriate for their needs.

We have previously investigated how to model and formally relate some Haskell GP
libraries using Agda [9], and concluded that some approaches clearly subsume others.
The relevance of this fact extends above mere theoretical interest, since a comparison
can also provide means for converting between approaches. Ironically, code duplication
across generic programming libraries is evident: the same function can be nearly iden-
tical in different approaches, yet impossible to reuse, due to the underlying differences
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in representation. A conversion between approaches provides the means to remove du-
plication of generic code.

In this paper we show how to automatically derive representations for many popular
GP libraries, all coming from one single compiler-supported approach. The base ap-
proach, generic-deriving [10], has been supported in the Glasgow Haskell Compiler
(GHC), the main Haskell compiler, since version 7.2.1 (August 2011). From gener-
ic-deriving we define conversions to other popular generic libraries: regular [13],
multirec [14], and syb [5, 6]. Some of these libraries are remarkably different from
each other, yet advanced type-level features in GHC, such as GADTs [16], type func-
tions [15], and kind polymorphism [18], allow us to perform these conversions.

Using the type class system, our conversions remain entirely under the hood for
the end user, who need not worry anymore about which GP approach does what, and
can simply use generic functions from any approach. As an example, the following
combination of generic functionality is now possible:

import Generics.Deriving as GD
import Generics.Regular.Rewriting as R
import Generics.SYB.Schemes as S
import Conversions ()
data Logic α = Var α | Logic α :∨: Logic α | Not (Logic α) | T | F

deriving (GD.Generic)
rewriting :: Logic Char
rewriting = let elim2Not = R.rule $ λx→ Not (Not x) : : x

in R.bottomUp (R.rewrite elim2Not)$ T :∨: Not (Not (Var ’p’))
size :: Int
size = S.everything (+) (const 1)$ Var ’p’ :∨: Var ’q’
rename :: Logic String
rename = GD.gmap (’_’:)$ T :∨: Var "p"

Here, the user defines a Logic datatype, and lets the compiler automatically derive a
Generic representation for it (from generic-deriving). Three examples then show
how functionality specific to three separate GP libraries can be used from this single
representation:

– In rewriting, a rewrite rule is applied to a logical expression. The rewriting system
requires a fixed-point view on data for encoding expressions extended with meta-
variables [13]. This fixed-point view is provided by the regular library. The term
rewriting evaluates to T :∨: Var ’p’.

– Expression size showcases the combinator approach to GP typical of syb, reducing
all leaves to 1, and combining them with the (+) operator. The term size evaluates
to 5.

– Expression rename uses a map on the String parameter of Logic to rename all the
variables. This makes uses of the support for parameters of generic-deriving.
The term rename evaluates to T :∨: Var "_p".

All this functionality can be achieved using only the Generic representation of ge-
neric-deriving, and by importing the conversion instances defined in some module
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Conversions (provided by us); there is no need to derive any generic representations for
regular or syb. Previously, combining the functionality of these libraries would also
require generic representations for regular and syb. This would bring a dependency
on Template Haskell [17] for deriving regular representations, and added code bloat.

Generic library writers also see an improvement in their quality of life, as they no
longer need to write Template Haskell code to derive representations for their libraries,
and can instead rely on our conversion functions. Furthermore, many generic functions
can now be recognised as truly duplicated across approaches, and can be deprecated
appropriately. Defining new approaches to GP has never been easier; GP libraries can
be kept small and specific, focusing on one particular aspect, as users can easily find
and use other generic functionality in other approaches.

We say this work is about generic generic programming because it is generic over
generic programming approaches. Specifically, we define conversions to multiple GP
libraries (Sections 3 to 5), covering a wide range of approaches, including libraries with
a fixed-point view on data (regular and multirec), and a library based on traversal
combinators (syb). In defining our conversions to other libraries, we also update their
definitions to make use of the latest GHC extensions (namely data kinds and kind poly-
morphism [18]). This is not essential for our conversions (i.e. we are not changing the
libraries to make our conversion easier), but it improves the libraries (while these li-
braries were always type safe, our changes make them more kind safe).

Moreover, our work brings forward a new way of looking at GP, where new, special-
purpose GP libraries can be easily defined, without needing to repeat lots of common
infrastructure. Users of GP can now simply cherry-pick generic functions from different
libraries, without having to worry about the overhead introduced by each GP approach.

Notation In order to avoid syntactic clutter and to help the reader, we adopt a liberal
Haskell notation in this paper. We assume the existence of a kind keyword, which
allows us to define kinds directly. These kinds behave as if they had arisen from datatype
promotion [18], except that they do not define a datatype and constructors. We omit the
keywords type family and type instance entirely, making type-level functions look like
their value-level counterparts. We colour constructors in blue, types in red, and kinds
in green. Additionally, we use Greek letters for type variables, apart from κ , which is
reserved for kind variables.

This syntactic sugar is only for presentation purposes. An executable version of the
code, which compiles with GHC 7.6.2, is available at http://dreixel.net/research/
code/ggp.zip. We rely on many GHC-specific extensions to Haskell, which are essen-
tial for our development. Due to space constraints we cannot explain them all in detail,
but we try to point out relevant features as we use them.

Structure of the paper We first provide a brief introduction to the generic-deriving
library for GP (Section 2). We then see how to obtain other libraries from generic-de-
riving: regular (Section 3), multirec (Section 4), and syb (Section 5). We then
conclude with a discussion in Section 6. Along the way, we also show several examples
of how our conversion enables seamless use of multiple approaches.

http://dreixel.net/research/code/ggp.zip
http://dreixel.net/research/code/ggp.zip
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2 Introduction to generic-deriving

We begin our efforts of homogenising GP libraries by introducing generic-deriving,
the library from which we derive the other representations.

kind UnD = VD | UD | KD KType ?
| MD MetaD UnD
| UnD :+:D UnD
| UnD :×:D UnD

kind MetaD = DD MetaData
| CD MetaCon
| FD MetaField

kind KType = P | R RecType | U
kind RecType = S | O

data Jα :: UnD KD ::? where
U1D :: JUD KD
M1D :: Jα KD → JMD ι α KD
K1D :: α → JKD ι α KD
L1D :: Jφ KD → Jφ :+:D ψ KD
R1D :: Jψ KD→ Jφ :+:D ψ KD
:×:D :: Jφ KD → Jψ KD→ Jφ :×:D ψ KD

Fig. 1. Universe and interpretation of generic-deriving.

Universe The structure used to encode datatypes in a GP approach is called its universe
[12]. The universe of generic-deriving can be seen on the left in Figure 1. It repre-
sents datatypes as a sum of products, additionally keeping track of meta-information.
Since GP approaches often use the same names for similar representation types, we use
the “D” subscript for generic-deriving names.

Datatypes are sums (choices between constructors, encoded with :+:D) of prod-
ucts (constructors with several arguments, encoded with :×:D). The sum can be nullary
(VD), in case the datatype has no constructors, and so can each of the products (UD),
in case the constructor takes no arguments. Constructor arguments (encoded with KD)
can either be the (last) parameter of the datatype (KD P), an occurrence of a datatype,
which can be the same as the one we are defining (KD (R S)) or some other datatype
(KD (R O)), or something else (such as an application of a type variable, encoded with
KD U). The annotations given by KType and RecType will prove essential when convert-
ing to approaches with a fixed-point view on data (Section 3 and Section 4), as there we
need explicit knowledge about the recursive structure of data.

Interpretation The interpretation of the universe defines the structure of the values that
inhabit the datatype representation. Datatype representations are types of kind UnD. We
use a GADT [16] J KD to encode the interpretation of the universe of generic-deriv-
ing, which can be seen on the right in Figure 1. The top-level inhabitant of a datatype
representation is always a constructor M1D (with type JMD (DD ι) α KD), which serves
only as a proxy to store the datatype metadata on its type. An M1D appears also around
each constructor (but then with type JMD (CD ι) α KD, and each constructor field (but
then with type JMD (FD ι) α KD). Constructors can be on the left (L1D) or right (R1D)
side of a sum. Constructor arguments are encoded in a product structure (:×:D), or can
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be empty (U1D). Constructor fields are all encoded with K1D, which is used with dif-
ferent types to encode the meta-information of the field in question (similarly to M1D).
We encode the last parameter of the datatype with K1D :: KD P α , datatype occurrences
with K1D :: KD (R ι) α , with ι being S if the datatype is the same we are encoding and
O otherwise, and anything else with K1D :: KD U α .

Conversion to and from user datatypes Having seen the generic universe and its
interpretation, we need to provide a mechanism to mediate between user datatypes and
our generic representation. We use a type class for this purpose:

class GenericD (α ::?) where
RepD α :: UnD

fromD :: α → JRepD α KD
toD :: JRepD α KD→ α

In the GenericD class, the type family RepD encodes the generic representation asso-
ciated with user datatype α . The class methods from and to perform the conversion
between the user datatype values and the interpretation of the generic representation.
From here on, we shall omit the toD direction, as it is always entirely symmetrical
to fromD.

Example encoding: lists We now show an example of how a user datatype is encoded
in generic-deriving. (Users never have to define the encodings manually; GHC can
automatically derive GenericD instances.) We omit the encoding of metadata in the
datatype, constructors, and selectors, as these are not relevant to our developments in
the rest of the paper. The simplified instance looks as follows:

instance Generic [α ] where
Rep [α ] = UD :+:D ((KD P α) :×:D (KD (R S) [α ]))

from [ ] = L1D U1D
from (h : t) = R1D (K1D h :×:D (K1D t))

The first argument of the (:) constructor is tagged as being the parameter (with P), and
the second as being a recursive occurrence of the datatype being defined (R S).

3 From generic-deriving to regular

In this section we show how to obtain regular representations from generic-de-
riving. The regular library, first described in the context of generic rewriting [13],
encodes datatypes using a “fixed-point view”. As such, it abstracts over the recursive
position of the datatype, allowing for the definition of recursive morphisms such as cata-
and anamorphisms. It was previously thought that a fixed-point view was a requirement
for defining recursive morphisms generally, or that it would be very hard or messy in
other views. Here we show that this need not be the case, as our conversion to regular
comes from a non-fixed point view, and is rather simple.
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Encoding regular We show a simplified encoding of the universe of regular (sub-
script “R”), omitting the constructor meta-information:

kind UnR = UR | IR | KR ? | UnR :+:R UnR | UnR :×:R UnR

As before, we have a type for encoding unitary constructors (UR) and a type for con-
stants (KR). However, we also have a type IR to encode recursion. The regular library
supports abstracting over single recursive datatypes only, so IR need not store the index
of what type it encodes. Sums and products behave as in generic-deriving.

The interpretation of this universe is parametrised over the type of recursive posi-
tions τ , which is used in the IR case:

data Jα :: UnR KR (τ ::?) where
UR :: JUR KR τ

IR :: τ → J IR KR τ

KR :: α → JKR α KR τ

LR :: Jα KR τ → Jα :+:R β KR τ

RR :: Jβ KR τ → Jα :+:R β KR τ

(:×:R) :: Jα KR τ → Jβ KR τ → Jα :×:R β KR τ

The Regular class witnesses the conversion between user-defined datatypes and
their representation in regular. Note how the τ parameter of Jα KR is set to α itself:

class Regular (α ::?) where
PF α :: UnR

fromR :: α → JPF α KR α

This means that regular encodes a one-layer generic representation, where the recur-
sive positions are values of the original user datatype, not generic representations.

Type conversion We now show the first conversion in this paper, which serves as
an introduction to the structure of our conversions. We use a type family to adapt the
representation, and a type-class to adapt the values. The first step is then to convert the
representation types of generic-deriving into representation types of regular using
a type family:

D→R (α :: UnD) :: UnR

For units, meta-information, sums, and products, the conversion is straightforward:

D→R UD = UR
D→R (MD ι α) = D→R α

D→R (α :+:D β ) = D→R α :+:R D→R β

D→R (α :×:D β ) = D→R α :×:R D→R β

The interesting case is that for constructor arguments, as we have to treat recursion into
the same datatype differently:

D→R (KD (R S) τ) = IR
D→R (KD (R O) α) = KR α
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D→R (KD P α) = KR α

D→R (KD U α) = KR α

One might wonder what would happen if the generic-deriving representation had an
inconsistent use of KD (R S) τ where τ is not the type being represented. This would
lead to a type error, as we explain in the next section.

Value conversion Having performed the type-level conversion, we have to convert
the values in a type-directed fashion. The conversion of the values is witnessed by the
ConvertD→R type class:

class ConvertD→R (α :: UnD) τ where
d→r :: Jα KD→ JD→R α KR τ

(We omit the r→d direction, as it is entirely symmetrical.) This is a multiparameter type
class because we need to enforce the restriction that the recursive occurrence under
KD (R S) τ has to be of the expected type τ:

instance ConvertD→R (KD (R S) τ) τ where d→r (K1D x) = IR x

The tag R S expresses this restriction informally only; the formal guarantee is given
by the type-checker, since this instance requires type equality, encoded in the repeated
appearance of the variable τ in the instance head. We omit the remaining instances as
they are unsurprising.

To finish the conversion, we provide a Regular instance for all GenericD types. It is
here that we set the second parameter of ConvertD→R to the type being converted (α):

instance (GenericD α,ConvertD→R (RepD α) α)⇒ Regular α where
PF α = D→R (RepD α)
fromR x = d→r (fromD x)

With this instance, functions defined in the regular library are now available to all
generic-deriving supported datatypes. This is remarkable; in particular, functions
that require a fixed-point view on data, such as the generic catamorphism, can be used
on generic-deriving types without having to provide an explicit Regular instance.
From the generic library developer point of view there are other advantages. When
defining a new generic function that fits the fixed-point view naturally, a developer
could implement this function easily in regular, but would then require the users of
this function to use regular, and manually write Regular instances for their datatypes,
or use the provided Template Haskell code to derive these automatically. Alternatively,
the developer could try to define the same function in generic-deriving, but this
would probably require more effort; the advantage would be that users wouldn’t need
an external library to use this function, and could rely solely on GHC.

With the instance above, however, the developer can implement the function in
regular, and the users can use it through the deriving GenericD extension of GHC.
In fact, regular can be simplified by removing the Template Haskell code for gener-
ating Regular instances altogether. Given that this code often requires updating due to
new releases of GHC changing Template Haskell, this is a clear improvement, and helps
reduce clutter from the GP libraries themselves.
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4 From generic-deriving to multirec

Having seen how to convert from generic-deriving to a fixed-point view for a single
datatype, we are ready to tackle the challenge of converting to multirec, a library with
a fixed-point view over families of datatypes [14].

Encoding multirec The universe of multirec is similar to that of regular, only IM
is parametrised over an index (since we now support recursion into several datatypes),
and we have a new code :.:M for tagging a part of the representation with a concrete
index:

data UnM κ = UM | IM κ | KM ? | UnM κ :.:M κ

| UnM κ :+:M UnM κ | UnM κ :×:M UnM κ

Tagging is used to differentiate between different datatypes within a single represen-
tation. As an example, we show a family of two mutually-recursive datatypes together
with the type-level representation in multirec:

data Zig = Zig Zag | ZigEnd
data Zag = Zag Zig
ZigZagRep = ((IM Zag :+:M U) :.:M Zig)

:+:M ((IM Zig) :.:M Zag)

The multirec library encodes indices by using the datatype itself as an index. As such,
in our example above, the index κ is ?. This turns out to be convenient for our conver-
sion, so we will always use UnM instantiated to kind ?.

The interpretation of the multirec universe is parametrised not only by the repre-
sentation type α , but also by a type constructor τ that converts indices into their concrete
representation, and a particular index type ι :

data Jα :: UnM κ KM (τ :: κ → ?) (ι :: κ) where
UM :: JU KM τ ι

IM :: τ o→ J IM oKM τ ι

KM :: α → JKM α KM τ ι

TagM :: Jα KM τ ι → Jα :.:M ι KM τ ι

LM :: Jα KM τ ι → Jα :+:M β KM τ ι

RM :: Jβ KM τ ι → Jα :+:M β KM τ ι

:×:M :: Jα KM τ ι → Jβ KM τ ι → Jα :×:M β K τ ι

In other words, the interpretation Jα KM τ ι can be seen as a family of datatypes, one
for each particular index ι . The TagM constructor introduces a type equality constraint
on the tagged index; this is how the interpretation is restricted to a particular index.

Finally, user datatypes are converted to the multirec representation using two type
classes, FamM and ElM:

newtype I0M α = I0M α

class FamM (φ ::?→ ?) where
PFM φ :: UnM ?
fromM :: φ ι → ι → JPFM φ KM I0M ι
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class ElM (φ :: κ → ?) (ι :: κ) where
proofM :: φ ι

The class FamM takes as argument a family type φ . Here we instantiate the τ in J KM to
an identity type I0M; other applications in multirec, such as the generalised catamor-
phism, make use of the generality of τ . The ElM class associates each index type ι with
its family φ .

This is all best understood through an example, so we show the encoding for the
family of datatypes Zig and Zag shown before. The first step is to define a GADT to
represent the family. This datatype contains elements of either type Zig or Zag:

data ZigZag ι where
ZigZagZig :: ZigZag Zig
ZigZagZag :: ZigZag Zag

The type ZigZag now describes our family, by providing two indices ZigZagZig and
ZigZagZag. This is made concrete by the following instances:

instance FamM ZigZag where
PFM ZigZag = ZigZagRep
fromM ZigZagZig (Zig z) = LM (TagM (LM (IM (I0M z))))
fromM ZigZagZig ZigEnd = LM (TagM (RM UM))
fromM ZigZagZag (Zag z) = RM (TagM (IM (I0M z)))

instance ElM ZigZag Zig where proofM = ZigZagZig
instance ElM ZigZag Zag where proofM = ZigZagZag

Type conversion The first step in converting a family of datatypes representable in
generic-deriving to multirec is to convert a single datatype. This is the task of the
D→M type family:

D→M (α :: UnD) :: UnM ?

D→M UD = UM
D→M (MD ι α) = D→M α

D→M (α :+:D β ) = D→M α :+:M D→M β

D→M (α :×:D β ) = D→M α :×:M D→M β

The most interesting case is that for constants, which we now need either to turn into
indices, or to keep as constants. We turn recursive occurrences into indices, and leave
the rest as constants:

D→M (KD (R ι) τ) = IM τ

D→M (KD U α) = KM α

D→M (KD P α) = KM α

Having defined D→M to convert one datatype, we are left with the task of converting
a family of datatypes. We encode a family as a type-level list of datatypes, and define
D→MFam parametrised over such a list:

data⊥
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D→MFam (α :: [? ]) :: UnM ?

D→MFam [ ] = KM ⊥
D→MFam (α : β ) = (D→M (RepD α)) :.:M α) :+:M D→MFam β

We convert a list of datatypes by taking each element, looking up its representation
in generic-deriving using RepD, converting it to a multirec representation using
D→M, and tagging that with the original datatype. The base case is the empty list, which
we encode with an empty representation (since multirec has no empty representation
type, we define an empty datatype ⊥ and use it as a constant).

Value conversion Converting a value of a single type is done in exactly the same way
as for the regular conversion:

class ConvertD→M (α :: UnD) where
d→m :: Jα KD→ JD→M α KM I0M ι

As before, we omit the instances, as they are without surprises.
We’re left with dealing with the encapsulation of values within a family. We repre-

sent families as lists of types, but a value of a family is still of a single, concrete type.
We use a GADT to encode the notion of a value within a family:

data (α :: [? ]) :@: (β ::?) where
This :: (α : β ) :@: α

That :: β :@: α → (γ : β ) :@: α

For example, the value This ZigEnd has the type [Zig,Zag ] :@: Zig, and the value
That (This (Zag ZigEnd)) has the type [Zig,Zag ] :@: Zag.

The application of :@: to a single argument is of kind ?→ ?, and it encodes pre-
cisely the notion of a multirec family. We make this explicit by providing ElM in-
stances stating that a type α is either at the head of the list, and can be accessed with
This, or it might be deeper within the list, in which case we have to continue indexing
with That:

instance ElM ((α : β ) :@:) α where proofM = This
instance (ElM (β :@:) α)⇒ ElM ((γ : β ) :@:) α where proofM = That proofM

Converting a value within a family requires producing the appropriate injection into
the right element of the family, plus the tag (with TagM). We use our :@: GADT for this
(which results in a right-biased encoding of the family):

instance (FamConstrs α)⇒ FamM (α :@:) where
PFM (α :@:) = D→MFam α

fromM This x = LM (TagM (d→m (fromD x)))
fromM (That k) x = RM (fromM k x)

The constraints on this instance are not trivial, as each type in the family needs to have a
GenericD instance and be convertible through ConvertD→M . The FamConstrs constraint
family expresses these requirements:

FamConstrs (α :: [? ]) :: Constraint
FamConstrs [ ] = ()
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FamConstrs (α : β ) = ( GenericD α,ConvertD→M (RepD α)
, FamM (β :@:),FamConstrs β )

Example To test this conversion, assume we have some generic function sizeM de-
fined in multirec which computes the size of a term. Assume we also have GenericD
instances for the Zig and Zag types in generic-deriving (derived by the compiler).
These give rise to a FamM ([Zig,Zag ] :@:) instance (this section). As such, we can call
sizeM directly on a value of type Zig:

sizeM :: (FamM φ , . . .)⇒ φ ι → ι → Int
sizeM = . . .

zigZag :: Zig
zigZag = Zig (Zag (Zig (Zag ZigEnd)))
testd→m :: Int
testd→m = sizeM (proof :: [Zag,Zig ] :@: Zig) zigZag

Our test value testd→m evaluates to 4 as expected. The use of :@: makes multirec easier
to use than before; unlike in our example in Section 4, it is not necessary to define a
family type; we can simply use :@:. The index (first argument to sizeM) is automatically
computed from the type signature of proof , so there is no need to explicitly use This
and That. Finally, families can be easily extended: the code for testd→m works equally
well if we supply proof as having type [Zag,Zig, Int ] :@: Zig, for instance.

5 From generic-deriving to syb

The syb library, unlike the others we have seen so far, does not encode the structure
of user datatypes at the type level. Instead, it views data as successive applications of
terms; generic functions then operate on this applicative structure. The interface pre-
sented to the user hides this view, and is instead based on various traversal operators. In
this section we show how to obtain syb representations of data from generic-deriv-
ing. We use the syb encoding of Hinze et al. [3] as the basis of our development instead
of the “official” encoding shipped with GHC, but this does not make our conversion any
less applicable or general.

Encoding syb The basis of syb is the Spine datatype, which defines a view on data as a
sequence of applications. A value of type Spine is either a constructor, or an application
of a Spine with functional type to an argument:

data Spine ::?→ ? where
Con :: α → Spine α

(:�:) :: (Data α)⇒ Spine (α → β )→ α → Spine β

The Data constraint will be explained later.
The Spine datatype is both Functorial and Applicative, and we can also fold it:

instance Functor Spine where
fmap f (Con x) = Con (f x)
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fmap f (c :�: x) = fmap (f◦) c :�: x
instance Applicative Spine where

pure = Con
Con f <∗> x = fmap f x
(c :�: x)<∗> Con y = fmap (λ f x→ f x y) c :�: x
(c :�: x)<∗> (d :�: y) = (fmap (λ f d y→ f (d y)) (c :�: x)<∗> d) :�: y

foldSpine :: (∀α β .Data α ⇒ φ (α → β )→ α → φ β )
→ (∀α.α → φ α)→ Spine α → φ α

foldSpine f z (Con c) = z c
foldSpine f z (c :�: x) = foldSpine f z c ‘f ‘ x

Although the type of foldSpine might look intimidating at first, its first argument is
simply the replacement for the :�: constructor, and the second is the replacement for
Con.

The Data class is used to embed conversions between user datatypes and the Spine
generic view:

class (Typeable α)⇒ Data α where
spine :: α → Spine α

gfoldl :: (∀γ β .Data γ ⇒ φ (γ → β )→ γ → φ β )
→ (∀β .β → φ β )→ α → φ α

gfoldl f z = foldSpine f z◦ spine

The Data class has Typeable as a superclass for convenience, because many generic
functions in syb make use of type-safe runtime cast. The gfoldl method is the basis of
all generic consumer functions in syb, and we see that it is just a variant of foldSpine.

The way syb is implemented in GHC, gfoldl is a primitive, and its definition is auto-
matically generated by the compiler for user datatypes using the deriving mechanism.
In our presentation, the spine method is the primitive, from which gfoldl follows.

The encoding of user datatypes in syb using Spine is very simple. As an example,
here is the encoding of lists:

instance (Data α)⇒ Data [α ] where
spine [ ] = Con [ ]
spine (h : t) = Con (:) :�: h :�: t

Base types are encoded trivially:

instance Data Int where spine = Con

We show a simplified version of syb, in particular omitting meta-information and
the gunfold function. These are cosmetic simplifications only; Hinze et al. [3] describe
how to support meta-information in the Spine view, and Hinze and Löh [2] describe
how to define gunfold.

Value conversion To convert the generic representation of generic-deriving into
that of syb we only need to convert values, as syb has no type-level representation. As
such, we require only a type class:
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class ConvertD→S (α :: UnD) where
d→s :: Jα KD→ Spine (Jα KD)

The idea is to first build a representation of type Spine (Jα KD), and later transform this
into Spine α . The instances are unsurprising, and follow the functorial nature of Spine:

instance ConvertD→S UD where d→s U1D = Con U1D

instance (ConvertD→S α,ConvertD→S β )⇒ ConvertD→S (α :+:D β ) where
d→s (L1D x) = fmap L1D (d→s x)
d→s (R1D x) = fmap R1D (d→s x)

instance (ConvertD→S α,ConvertD→S β )⇒ ConvertD→S (α :×:D β ) where
d→s (x :×:D y) = pure (:×:D)<∗> d→s x <∗> d→s y

instance (Data α)⇒ ConvertD→S (KD ι α) where
d→s (K1D x) = Con K1D :�: x

instance (ConvertD→S α)⇒ ConvertD→S (MD ι α) where
d→s (M1D x) = fmap M1D (d→s x)

With these instances in place, we can define a Data instance for all GenericD types:

instance (GenericD α,ConvertD→S (RepD α),Typeable α)⇒ Data α where
spine = fmap toD ◦d→s◦ fromD

We first convert the user type to its generic-deriving representation with fromD,
then build a Spine representation using d→s, and finally adapt this representation with
fmap toD.

To test our conversion, assume that we had not given the Data [α ] instance ear-
lier in this section; the GenericD [α ] instance of Section 2 would then cascade down
into a Data [α ] instance using the conversion defined in this section. Assuming also
generic functions everywhere (to apply a transformation to all subterms) and mkT (to
transform a type-specific query into a generic query), as defined in syb, the expression
everywhere (mkT (λn→ n+ 1 :: Int)) [1,2,3 :: Int ] evaluates to [2,3,4], as expected,
without ever having to derive Data instances directly.

The code defined in this section, albeit straightforward, allows GHC developers to
scrap the current code for deriving Data instances, as these can be obtained automati-
cally from GenericD instances (which are currently derivable in GHC). Furthermore, it
brings the combinator-style approach to GP of syb within immediate reach of the other
approaches. It is also worth nothing that uniplate, another GP library, can derive its
encodings from syb [11, Section 5.3]; therefore, by transitivity, we can also provide
uniplate encodings from generic-deriving.

6 Discussion and conclusion

We conclude this paper with a review of related work, and a discussion of concerns
regarding the pratical implementation of the conversions as shown in the paper.

Related work We have defined conversions between GP approaches before, in Agda
[9]. Those conversions were of a more theoretical nature, as the intention was to for-
mally compare approaches. Furthermore, generic-deriving was not involved. Our
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work can be seen as providing conversions between views. In particular, while the
Generic Haskell compiler had generic views defined internally, whose adaptation re-
quired changing the compiler itself [4, Section 5], our work allows new views to be
defined simply by writing a new universe and interpretation together with a conversion
(as in Section 3).

Other approaches to providing functionality mixing different views have been at-
tempted. Chakravarty et al. [1] mention support for multiple views, but do this through
duplication of the universe, interpretation, and datatype representations. The Hackage
pages instant-zipper and generic-deriving-extras provide functionality usually
associated with a fixed-point view on a library without such a view, respectively, a
zipper in instant-generics, and a fold in generic-deriving. This is achieved by
extending the non fixed-point view libraries, rather than by converting between repre-
sentations, as we do.

Performance One aspect that we have not addressed in this paper is the potential per-
formance penalty that the conversions might bring. We find it very likely that such an
overhead exists, given that the conversions are not trivial. However, we also believe that
this overhead should be fully removable by the compiler, using techniques similar to
those described by Magalhães [8]. Performance concerns are relevant, as these are cru-
cial for user adoption of our conversions. However, optimisation concerns often result
in cumbersome code where the original idea is obscured. As such, we preferred to focus
on presenting the conversions and their potential applications, and defer performance
concerns to future work.

Practical implementation Performance concerns are just one of the aspects to con-
sider when deciding how to best integrate our conversions with the existing GP libraries.
While we have tried to remain faithful to the original libraries in our encoding, a few
modifications to the way generic-deriving handles the tags in KD and RecD were
necessary to support the conversion to multirec. These changes, besides being minor,
actually improve generic-deriving, as the current implementation is rather ill-defined
with respect to which tag is used when. Furthermore, we know of no generic function
currently relying on these tags; our conversion in Section 4 might be the first example.

We have used datatype promotion in all approaches, and encode meta-information
at the type level, instead of using type classes. These changes are not backwards com-
patible because the current implementation of datatype promotion requires choosing
different names for a representation type (e.g. UR) and its interpretation (UR), while
these are often the same in the current implementations of the libraries. While the im-
plementation of datatype promotion might change to allow avoiding name clashes,it
might be preferable to have a new release for each library that breaks backwards com-
patibility, requires GHC > 7.6, but homogenises naming conventions and meta-data
representation across libraries, for instance. Alternatively, we could introduce a new li-
brary, intended to sit at the top of the hierarchy, from which all other conversions could
be derived. This library would not be intended for direct use, allowing it to be easily
adapted to support new libraries. This would further enhance the new approach to GP
in Haskell that we advocate: a particular library is just a particular way to view data,
and all libraries interplay seamlessly because they all share a common root.

http://hackage.haskell.org/package/instant-zipper
https://github.com/spl/generic-deriving-extras
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Conclusion In the past, there was a lot of apparent competition between different ap-
proaches to GP. While it is reasonably easy to use Template Haskell to derive the en-
codings of the datatypes needed to use a particular library, most users seemed to prefer
the libraries that had direct support within GHC, such as syb or generic-deriving.
On the other hand, users had a difficult decision to make, operating under the assump-
tion that they have to pick a single library among the many that are available, perhaps
afraid to make the wrong choice and to then stumble upon a programming problem that
cannot easily be solved using the chosen library.

Those times are over. GP library authors no longer have to feel embarrassed if they
present a new library suitable only for a specific class of GP programming problems.
All they need to do is to define a conversion, and their library will be integrated better
than ever before, without any need for Template Haskell. Users should no longer worry
that they have to make a particular choice. All GP libraries interact nicely, and they can
simply pick the one that offers the functionality they need right now—we have arrived
in the era of truly generic generic programming!
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