
The UU AG System

Programming with Functions, Aspects, Attributes, and Catamorphisms

Andres Löh

Institute of Information and Computing Science

Utrecht University

e-mail: andres@cs.uu.nl

June 27, 2001

(http://www.cs.uu.nl/~andres/talk3.ps)

The UU AG System — Programming with Functions, Aspects, Attributes, and Catamorphisms

A simplified view on compilers

• Input is transformed into output.

• Input and output language have little structure.

• During the process structure such as an Abstract Syntax Tree (AST) is created.

AST

input code output code

The UU AG System — Programming with Functions, Aspects, Attributes, and Catamorphisms 1

Abstract syntax and grammars

• The structure in an abstract syntax tree is best described by a grammar.

• A concrete value (program) is then a word of the language defined by that grammar.

Decimal → Sign Digits
| Digits

• The rules in a grammar are called productions. The right hand side of a rule is derivable from the

left hand side.

• In each production a nonterminal is replaced by (terminals and/or) other nonterminals.

• A word is in the language defined by the grammar if it is derivable from the root symbol (or root

nonterminal) in a finite number of steps.

• For convenience, we will always name the root symbol Root .

The UU AG System — Programming with Functions, Aspects, Attributes, and Catamorphisms 2

An example grammar

The following grammar describes the abstract syntax of a very simple language:

Root → Exprs
Exprs → Expr Exprs

| ε

Expr → Term
Term → String

| Term Term

• A program is a list of expressions.

• Each expression is a term.

• A term is either a string, or a concatenation of multiple strings.

The UU AG System — Programming with Functions, Aspects, Attributes, and Catamorphisms 3

Properties of Haskell I: Algebraic data types

• Haskell provides a powerful language construct to define own data types.

• Choice can be represented by introducing different constructors.

• Constructors may contain fields.

• It is possible to define type constructors by the introduction of type variables.

• It is possible to define recursive types.

data Bit = Zero | One

data Complex = Complex Real Real
data Maybe a = Just a | Nothing
data List a = Nil | Cons a (List a)

• There is a builtin list type with special syntax.

data [a] = [] | a : [a]

[1, 2, 3, 4, 5]

The UU AG System — Programming with Functions, Aspects, Attributes, and Catamorphisms 4

Grammars correspond to datatypes

• Given this power, each nonterminal can be seen as a data type.

• The productions can be translated into definitions.

• Constructor names have to be invented.

• Abstraction is not needed, but recursion is.

The UU AG System — Programming with Functions, Aspects, Attributes, and Catamorphisms 5

The example grammar translated

Root → Exprs
Exprs → Expr Exprs

| ε

Expr → Term
Term → String

| Term Term

DATA Root | Root Exprs
DATA Exprs | Cons hd : Expr tl : Exprs

| Nil

DATA Expr | Simple Term
DATA Term | Single String

| Concat left : Term right : Term

• Data type definitions in UU AG syntax are very similar (and, in fact, translated into) Haskell data type

definitions.

• Fields may be given field names.

• 〈Contrary to Haskell, UU AG constructor names do not have to be unique.〉

The UU AG System — Programming with Functions, Aspects, Attributes, and Catamorphisms 6

An example program

Root

Cons

Simple

Single

"Haskell"

Cons

Simple

Concat

Single

"AG"

Single

"s are cool!"

Nil

Root

Exprs

Exprs

Exprs

Expr

ExprTerm

Term Term

Term

The UU AG System — Programming with Functions, Aspects, Attributes, and Catamorphisms 7

Computation follows structure I: Total length

Root

Cons

Simple

Single

"Haskell"

Cons

Simple

Concat

Single

"AG"

Single

"s are cool!"

Nil

7

7

7

2 11

2 11

13

13 0

13

20

The UU AG System — Programming with Functions, Aspects, Attributes, and Catamorphisms 8

Computation follows structure II: Maximum length

Root

Cons

Simple

Single

"Haskell"

Cons

Simple

Concat

Single

"AG"

Single

"s are cool!"

Nil

7

7

7

2 11

2 11

13

13 0

13

13

The UU AG System — Programming with Functions, Aspects, Attributes, and Catamorphisms 9

Computation follows structure III: Spaces?

Root

Cons

Simple

Single

"Haskell"

Cons

Simple

Concat

Single

"AG"

Single

"s are cool!"

Nil

False

False

False

False True

False True

True

True False

True

True

The UU AG System — Programming with Functions, Aspects, Attributes, and Catamorphisms 10

Computation follows structure IV: Value of last term

Root

Cons

Simple

Single

"Haskell"

Cons

Simple

Concat

Single

"AG"

Single

"s are cool!"

Nil

"Haskell"

"Haskell"

"Haskell"

"AG" "s are cool!"

"AG" "s are cool!"

"AGs are cool!"

"AGs are cool!"

"AGs are cool!"

"AGs are cool!"

The UU AG System — Programming with Functions, Aspects, Attributes, and Catamorphisms 11

Computation follows structure — Observations

• Information is passed upwards.

• Constructors are replaced by operations.

• In many cases information is just copied unchanged.

The UU AG System — Programming with Functions, Aspects, Attributes, and Catamorphisms 12

Synthesised attributes

• In UU AG, computations are modelled by attributes.

• Each of the examples defines an attribute.

• Attributes that are computed in a bottom-up fashion are called synthesised attributes.

ATTR Exprs Expr Term [|| maxlen : Int]
SEM Term
| Single lhs.maxlen = length string
| Concat lhs.maxlen = left.maxlen + right.maxlen

SEM Expr
| Simple lhs.maxlen = term.maxlen

SEM Exprs
| Cons lhs.maxlen = max hd .maxlen tl .maxlen
| Nil lhs.maxlen = 0

The UU AG System — Programming with Functions, Aspects, Attributes, and Catamorphisms 13

Synthesised attributes — continued

• Different attributes (and their semantics) can be defined separately, but can interact (be defined in

terms of other attributes).

• The UU AG system provides copy rules to eliminate trivial equations.

SEM Exprs [|| isEmpty : Bool]
| Cons lhs.isEmpty = False
| Nil lhs.isEmpty = True

ATTR Exprs Expr Term [|| lastval : String]

SEM Term
| Single lhs.lastval = string
| Concat lhs.lastval = left.lastval ++ right.lastval

SEM Exprs
| Cons lhs.lastval = if tl .isEmpty then hd .lastval

else tl .lastval
| Nil lhs.lastval = error "no term in program"

The UU AG System — Programming with Functions, Aspects, Attributes, and Catamorphisms 14

Distributing information

• Sometimes synthesised attributes depend on outside information.

• Examples: Options, parameters, results of other computations.

• In these cases it is not sufficient to pass information bottom-up. We need top-down attributes, too!

The UU AG System — Programming with Functions, Aspects, Attributes, and Catamorphisms 15

Example: Joining strings

Root

Cons

Simple

Single

"Haskell"

Cons

Simple

Concat

Single

"AG"

Single

"s are cool!"

Nil
" and "

" and "

" and "

The UU AG System — Programming with Functions, Aspects, Attributes, and Catamorphisms 16

Example: Joining strings — continued

Root

Cons

Simple

Single

"Haskell"

Cons

Simple

Concat

Single

"AG"

Single

"s are cool!"

Nil

""

" and "

" and "

" and "

"Haskell"

"Haskell"

"Haskell"

"AG" "s are cool!"

"AG" "s are cool!"

"AGs are cool!"

"AGs are cool!"

"AGs are cool!"

"Haskell and AGs are cool!"

The UU AG System — Programming with Functions, Aspects, Attributes, and Catamorphisms 17

Inherited attributes

• In attribute grammars, top-down attributes are called inherited attributes.

• In UU AG, inherited attributes can be defined with the help of the ATTR and SEM statements, just

like synthesised attributes.

• Again, for the downward distribution of inherited attributes there are copy rules that save some typing.

• Attributes can be inherited and synthesised at the same time. They are then called chained attriutes.

SEM Root
| Root exprs.joinword = " and "

SEM Exprs [joinsep : String || joinval : String]

| Cons tl .joinsep = lhs.joinsep
lhs.joinval = if tl .isEmpty

then hd .lastval
else hd .lastval ++ lhs.joinsep ++ tl .joinval

| Nil lhs.joinval = ""

The UU AG System — Programming with Functions, Aspects, Attributes, and Catamorphisms 18

Properties of Haskell II: Higher-order functions

• In functional languages functions are first-class values. In short: you can treat a function like any

other value.

• Functions can be results of functions.

(+) :: Int → (Int → Int)
(+) 2 :: Int → Int
(+) 2 3 :: Int

• Functions can be arguments of functions.

twice :: (a → a)→ (a → a)

twice f x = f (f x)

twice ((+) 17) 8 ≡ 42

map :: (a → b)→ ([a]→ [b])

map f [] = []

map f (x : xs) = f x : map f xs

The UU AG System — Programming with Functions, Aspects, Attributes, and Catamorphisms 19

Catamorphisms

• A catamorphism is a function that computes a result out of a value of a data type by

– replacing the constructors with operations

– replacing recursive occurences by recursive calls to the catamorphism

• Since Haskell provides algebraic data types, catamorphisms can be written easily in Haskell.

• Sythesised attributes can be translated into catamorphisms in a straight-forward way.

The UU AG System — Programming with Functions, Aspects, Attributes, and Catamorphisms 20

Example translation

maxlen Root :: Root → Int
maxlen Root (Root exprs) = maxlen Exprs exprs
maxlen Exprs :: Exprs → Int
maxlen Exprs (Cons hd tl) = let hd maxlen = maxlen Expr

tl maxlen = maxlen Exprs
in max hd maxlen tl maxlen

maxlen Exprs Nil = 0

maxlen Expr :: Expr → Int
maxlen Expr (Simple term) = maxlen Term term
maxlen Term :: Term → Int
maxlen Term (Single string) = length string
maxlen Term (Concat left right) = let left maxlen = maxlen Term

right maxlen = maxlen Term
in left maxlen + right maxlen

The UU AG System — Programming with Functions, Aspects, Attributes, and Catamorphisms 21

Catamorphisms can be combined!

• Several attributes: Several catamorphisms?

• Better: Write one catamorphism computing a tuple!

+ only one traversal of the tree, attributes can depend on each other

SEM Exprs [|| isEmpty : Bool lastval : String]

| Cons lhs.isEmpty = True
lhs.lastval = if tl .isEmpty then hd .lastval

else tl .lastval
sem Exprs :: Exprs → (Bool , String)
sem Exprs (Cons hd tl) = let (tl isEmpty, tl lastval) = sem Exprs tl

hd lastval = sem Expr hd
in (False

, if tl isEmpty then hd lastval
else tl lastval

)

The UU AG System — Programming with Functions, Aspects, Attributes, and Catamorphisms 22

Catamorphisms can compute functions!

• Inherited attributes can be realised by computing functional values.

• In fact, a group of inherited and synthesised attributes is isomorphic to one synthesised attribute with

a functional value.

• The inherited attributes get mapped to the synthesised attributes.

The UU AG System — Programming with Functions, Aspects, Attributes, and Catamorphisms 23

Catamorphisms can compute functions! — continued

SEM Exprs [joinsep : String || joinval : String]

| Cons tl .joinsep = lhs.joinsep
lhs.joinval = if tl .isEmpty

then hd .lastval
else hd .lastval ++ lhs.joinsep ++ tl .joinval

sem Exprs :: Exprs → (String → (Bool , String, String))
sem Exprs (Cons hd tl)

lhs joinsep = let (tl isEmpty
, tl lastval
, tl joinval
) = sem Exprs tl lhs joinsep
hd lastval = sem Expr hd

in (False
, if tl isEmpty
then hd lastval
else hd lastval ++ lhs joinsep ++ tl joinval

)

The UU AG System — Programming with Functions, Aspects, Attributes, and Catamorphisms 24

Implementation of UU AG

• Translates UU AG source files into a Haskell module.

• Normal Haskell code can occur in UU AG source files as well as in other modules.

• UU AG data types are translated into Haskell data types.

• All attribute definitions for one data type are translated into one catamorphism on this data type,

computing a function that maps the inherited attributes to the synthesised attributes of that

particular data type.

• The catamorphism generated for the root symbol is the entry point to the computation.

• UU AG copies the right-hand sides of rules almost literally and without interpretation.

+ all Haskell constructs are available, system is lightweight

− no type check on UU AG level, the generation process must be understood by the programmer

The UU AG System — Programming with Functions, Aspects, Attributes, and Catamorphisms 25

A closer look at copy rules

• There is just one (very general) copy rule.

• Attributes are identified by name.

• If an explicit rule for a specific attribute is missing, it is copied from the “nearest” node (in the

picture) that provides that attribute.

parent

constructor

local variables

field1 field2 field3
. . . fieldn

The UU AG System — Programming with Functions, Aspects, Attributes, and Catamorphisms 26

Upward-copy, Downward-copy

• The copy rules for the distribution of inherited and the collection of synthesised attributes are special

cases of the general copy rule.

parent

constructor

field1 field2 field3
. . . fieldn

parent

constructor

field1 field2 field3
. . . fieldn

The UU AG System — Programming with Functions, Aspects, Attributes, and Catamorphisms 27

Tree traversals made easy I: Preliminaries

DATA Root | Root Tree
DATA Tree | Empty

| Node left : Tree right : Tree

Root

Node

Node

Node

Empty Empty

Empty

Node

Node

Node

Empty Empty

Node

Empty Empty

Node

Empty Empty

The UU AG System — Programming with Functions, Aspects, Attributes, and Catamorphisms 28

Tree traversals made easy II: DFL

• The nodes should be uniquely labelled (in depth-first order).

• Useful for unique counters, building and changing environments corresponding to the order of the

statements in the input code.

SEM Root
| Root tree.label = 0

SEM Tree [| label : Int |]
| Node left.label = lhs.label + 1

The UU AG System — Programming with Functions, Aspects, Attributes, and Catamorphisms 29

Tree traversals made easy II: DFL example

Root

Node

Node

Node

Empty Empty

Empty

Node

Node

Node

Empty Empty

Node

Empty Empty

Node

Empty Empty

0

1

2

3

3

3
3

3 3

4

5

5

5

5 5
6

6

6

6 6

7

7

7

7

7

7

The UU AG System — Programming with Functions, Aspects, Attributes, and Catamorphisms 30

Tree traversals made easy II: DFL example — continued

Root

Node

Node

Node

Empty Empty

Empty

Node

Node

Node

Empty Empty

Node

Empty Empty

Node

Empty Empty

0

1

2

3
3

3
3

3
3

3

3

3

4

5

5
5

5
5

5

5

6
6

6
6

6

6

6

7
7

7
7

7

7

7

The UU AG System — Programming with Functions, Aspects, Attributes, and Catamorphisms 31

Properties of Haskell III: Lazy evaluation

• Function applications are reduced in “applicative order”: First the function, then (and only if
needed) the arguments.

• Lazy boolean “or” function: True ∨ error "unreachable"

• Lazy evaluation allows dealing with infinite data structures, as long as only a finite part is used in the

end.

primes :: [Int]
primes = sieve [2 . .]

sieve :: [Int]→ [Int]
sieve (x : xs) = x : sieve [y | y ← xs, y ‘mod ‘ x 6≡ 0]

take 100 primes

The UU AG System — Programming with Functions, Aspects, Attributes, and Catamorphisms 32

Tree traversals made easy III: BFL

• A breadth-first traversal is not immediately covered by the copy rules.

• Nevertheless, it can be realised with only slightly more work (but making essential use of lazy

evaluation!).

• Combinations of BF and DF traversal are often useful for scoping issues.

• Basic Idea: Provide a list with initial counter values for each level, return a list with final counter

values for each level.

SEM Root
| Root tree.blabels = 0 : tree.blabels

SEM Tree [| blabels : [Int] |]
| Node loc.blabel = head lhs.blabels

left.blabels = tail lhs.blabels
lhs.blabels = (loc.blabel + 1) : right blabels

The UU AG System — Programming with Functions, Aspects, Attributes, and Catamorphisms 33

Tree traversals made easy III: BFL example

Root

Node

Node

Node

Empty Empty

Empty

Node

Node

Node

Empty Empty

Node

Empty Empty

Node

Empty Empty

[0, 1, 3, ?]

[1, 3, ?]

[3, ?]

[?]

[?]

[?]
[4, ?]

[4, ?] [2, 4, ?]

[4, ?]

[?]

[?]

[?]

[?] [?]

[?]

[?]

[?]

[?] [5, ?]

[?]

[?]

[?]

[6, ?]

[3, 6, ?]

[1, 3, 6, ?]

The UU AG System — Programming with Functions, Aspects, Attributes, and Catamorphisms 34

Extending the string example with variables

• Allow assignments to variables.

• Allow usage of variables.

• Variables should be visible gloabally.

DATA Expr | Assign var : String Expr
DATA Term | Var var : String
ATTR Exprs Expr Term [vardist : Environment | varcollect : Environment |]

• We store mappings of variables to string literals in an environment.

• Environments are given here as an abstract data type.

empty :: Environment
isDefined :: String → Environment → Bool
lookup :: String → Environment → Maybe String
add :: (String, String)→ Environment → Environment
merge :: Environment → Environment → Environment

The UU AG System — Programming with Functions, Aspects, Attributes, and Catamorphisms 35

Extending the string example with variables — continued

SEM Root
| Root exprs.varcollect = empty

exprs.vardist = exprs.varcollect
SEM Expr
| Assign expr .varcollect = if isDefined var lhs.varcollect

then error "non-unique variable name"
else add (var , expr .lastval) lhs.varcollect

SEM Term
| Var lhs.lastval = case lookup var lhs.vardist of

Nothing → error "unknown variable"
Just x → x

The UU AG System — Programming with Functions, Aspects, Attributes, and Catamorphisms 36

Extending the string example with groups

• Allow a list of expressions to be grouped.

• Outer variables can be used in a group, but inner variables are local.

• An inner variable can “shadow” an outer variable of the same name.

DATA Expr | Group Exprs
SEM Expr
| Group exprs.varcollect = empty

lhs.varcollect = lhs.varcollect
exprs.vardist = merge lhs.varcollect exprs.varcollect

The UU AG System — Programming with Functions, Aspects, Attributes, and Catamorphisms 37

Aspects can be separated

The UU AG system allows to freely mix two styles of programming:

• Attribute (i.e. aspect) oriented: Define the semantics of an attribute in one place.

• Data oriented: Define the attributes of a data type in one place.

The first one is usually difficult to realise in ordinary programming languages.

The UU AG System — Programming with Functions, Aspects, Attributes, and Catamorphisms 38

Work in progress

• Static analysis: circularity, dependencies, strictification

• Language independency

• Higher-order attributes

• Type checking

The UU AG System — Programming with Functions, Aspects, Attributes, and Catamorphisms 39

Acknowledgements

• The UU AG system has originally been designed by S. Doaitse Swierstra and Pablo Azero.

• The current implementation has been developed by Arthur Baars and Andres Löh. Further

development is coordinated by Arthur Baars. This version will soon be available via

http://www.cs.uu.nl.

The UU AG System — Programming with Functions, Aspects, Attributes, and Catamorphisms 40

