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Motivation: The expression problem

Consider a small language of expressions:

numbers

addition

equality

conditionals (if-statements)

It is easy to write an evaluator for this expression language in nearly any
programming language, be it imperative, object-oriented, or functional.
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Programs evolve

There are different possibilities to extend the program:

add new constructs to the expression language

multiplication
comparisons
operations on booleans
new base types
. . .

add more operations next to the evaluator

a pretty-printer
a simplifier/optimizer
an editor
. . .

Providing both directions of extensibility is known ad the expression
problem.

How do programming languages support these different forms of program
evolution?
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OO languages

In object-oriented languages, this is an idiomatic way to model the
problem:

there is a class of expressions,

different constructs of the expression language are instances of the
class,

the operations on expressions (such as evaluation,
pretty-printing, . . . ) are methods of the class
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OO languages, continued

class Expr where
eval :: Result
simplify :: Expr
pprint :: String

class Num implements Expr
where
-- specific to Num:
val :: Int
-- Expr interface:
eval = self.val
simplify = . . .
pprint = . . .

class Sum implements Expr
where
-- specific to Sum:
e1 :: Expr
e2 :: Expr
-- Expr interface:
eval = e1.eval + e2.eval
simplify = . . .
pprint = . . .
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OO languages, continued

Adding a new construct to the expression language:

class Prod implements Expr
where
-- specific to Prod:
e1 :: Expr
e2 :: Expr
-- Expr interface:
eval = e1.eval ∗ e2.eval
simplify = . . .
pprint = . . .

This is easy, because it is modular: there is no need to change code that
has already been written.
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OO languages, continued

Adding a new operation on expressions:

change class Expr to add the new operation as a method

change class Num to add the new operation and its implementation

change class Sum to add the new operation and its implementation

change class Prod to add the new operation and its implementation

This is difficult, because the changes are non-local and have to be made
in code that has already been written. In particular, the Expr class cannot
be shipped as a library.
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FP languages

In functional programming languages, this is an idiomatic way to model
the problem:

there is a data type of expressions,

different constructs of the expression language are data constructors
of the data type,

the operations on expressions (such as evaluation,
pretty-printing, . . . ) are functions the process values of the data type
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FP languages, continued

data Expr where
Num :: Int→ Expr
Sum :: Expr → Expr → Expr

eval :: Expr → Int
eval (Num n) = n
eval (Sum e1 e2) = e1 + e2

pprint :: Expr → String
pprint (Num n) = show n
pprint (Sum e1 e2) = "(" ++ pprint e1 ++ " + " ++ pprint e2 ++ ")"
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FP languages, continued

Adding a new operation on expressions:

simplify :: Expr → Expr
simplify (Sum e1 e2) = let s1 = simplify e1

s2 = simplify e2

in case (s1, s2)
of (Num 0, )→ Sum s2

( ,Num 0)→ Sum s1
→ Sum s1 s2

simplify e = e

This is easy, because it is modular: there is no need to change code that
has already been written.
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FP languages, continued

Adding a new construct to the expression language:

change data type Expr to add a new data constructor

change function eval to add an equation for the new constructor

change function pprint to add an equation for the new constructor

change function simplify to add an equation for the new constructor

This is difficult, because the changes are non-local and have to be made
in code that has already been written. In particular, the Expr class cannot
be shipped as a library.
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Intermediate summary

OO languages support extension of data, but not of functionality.

FP languages support extension of functionality, but not of data.

It seems to be difficult to support both directions of extension described in
the expression problem at the same time.
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The visitor pattern

Using the visitor pattern, we can simulate the functional program in an
OO language:

class ExprVisitor a where
visitNum :: Num→ a
visitSum :: Sum→ a
visitProd :: Prod→ a

class Expr where
accept :: ExprVisitor a→ a

class Num implements Expr where
val :: Int
accept v = v.visitNum self

class Sum implements Expr where
e1, e2 :: Expr
accept v = v.visitSum self

class Prod implements Expr where
e1, e2 :: Expr
accept v = v.visitProd self
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The visitor pattern, continued

class EvalVisitor implements ExprVisitor where
visitNum x = x.val
visitSum x = x.e1.accept self + x.e2.accept self
visitProd x = x.e1.accept self ∗ x.e2.accept self

class SimplifyVisitor implements ExprVisitor where
simplifyNum . . .
simplifySum . . .
simplifyProd . . .
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Type classes

Using type classes, we can simulate the OO program in a functional
language:

class Expr a where
eval :: a→ Result
simplify :: a→ Expr
pprint :: a→ String

data Num = Num Int

instance Expr Num
where

eval (Num val) = val
simplify . . .
pprint . . .

data Sum a b = Suma b

instance(Expr a,Expr b)⇒
Expr (Sum a b)

where
eval e1 e2 = eval e1 + eval e2

simplify . . .
pprint . . .

Andres Löh and Ralf Hinze Open data types and open functions 16



Type classes

Using type classes, we can simulate the OO program in a functional
language:

class Expr a where
eval :: a→ Result
simplify :: a→ Expr
pprint :: a→ String

data Num = Num Int

instance Expr Num
where

eval (Num val) = val
simplify . . .
pprint . . .

data Sum a b = Suma b

instance(Expr a,Expr b)⇒
Expr (Sum a b)

where
eval e1 e2 = eval e1 + eval e2

simplify . . .
pprint . . .
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Expression problem, again

If the direction of extensibility is not supported by our language of choice,
there is usually an encoding of our program that supports the other
direction, but

it again provides only one direction of extensibility (now the other) at
the time,

it is somewhat non-idiomatic (but: design patterns),

it is more verbose,

we have to decide in the very beginning which form of extensibility is
desired.
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Proper solutions

There are, by now, many solutions to the expression problem:

most for OO languages, some for FP languages

varying degrees of complexity

often require language extensions

support available in some modern languages

no light-weight, readily available solution for FP languages
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Goals

Add open data types to Haskell (or possibly other FP languages).

Open functions are also required.

As simple as possible.

Inspiration from Haskell type classes.
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Syntax: open data types

open Expr :: ∗

Num :: Int→ Expr

Sum :: Expr → Expr → Expr

Prod :: Expr → Expr → Expr

Additional constructors can be added at any time and any place of
the program.

Once we have open data types, we need open functions, too.
(Question: why?)
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Syntax: open functions

eval :: Expr → Int
eval (Num n) = n
eval (Sum e1 e2) = e1 + e2

eval (Prod e1 e2) = e1 ∗ e2

Additional equations can be added at any time and any place of the
program.
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A type of type representations

open data Type :: ∗ → ∗
Int :: Type Int
Char :: Type Char
Unit :: Type ()
Pair :: Type a→ Type b→ Type (a, b)
Either :: Type a→ Type b→ Type (Either a b)
List :: Type a→ Type [a]

data Either :: ∗ → ∗ → ∗ where
Left :: a→ Either a b
Right :: b→ Either a b

data [ ] :: ∗ → ∗ where
[ ] :: [a]
(:) :: a→ [a]→ [a]

Note: The data type Type is a generalized algebraic data type.
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An overloaded equality function

open eq :: Type a→ a→ a→ Bool
eq Int x y = x = = y -- use built-in
eq Char x y = x = = y -- use built-in
eq (Pair a b) (x1, x2) (y1, y2) = eq a x1 x2 ∧ eq b y1 y2

eq (Either a b) (Left x) (Left y) = eq a x y
eq (Either a b) (Right x) (Right y) = eq b x y
eq (Either a b) = False
eq (List a) xs ys = and (zipWith (eq a) xs ys)

Let us turn this function into a generic function:

eq a x y = case view a of View a′ from to→ eq a′ (from x) (from y)

data View :: ∗ → ∗ where
View :: a′ → (a→ a′)→ (a′ → a)→ View a
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Viewing a type as its structural representation

The function view is another overloaded open function:

open view :: Type a→ View a

How to view lists as a sum of a product:

data [ ] :: ∗ → ∗ where
[ ] :: [a]
(:) :: a→ [a]→ [a]

type List′ a = Either () (a, [a])

fromList :: [a]→ List′ a
fromList [ ] = Left ()
fromList (x : xs) = Right (x, xs)

toList :: List′ a→ [a]
toList (Left ()) = [ ]
toList (Right (x, xs)) = x : xs

view (List a) = View (Either Unit (Pair a (List a))) fromList toList
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Generic equality, again

open eq :: Type a→ a→ a→ Bool
eq Int x y = x = = y -- use built-in
eq Char x y = x = = y -- use built-in
eq (Pair a b) (x1, x2) (y1, y2) = eq a x1 x2 ∧ eq b y1 y2

eq (Either a b) (Left x) (Left y) = eq a x y
eq (Either a b) (Right x) (Right y) = eq b x y
eq (Either a b) = False
eq (List a) xs ys = and (zipWith (eq a) xs ys)
eq a x y = case view a of View a′ from to→ eq a′ (from x) (from y)

The case for List is now subsumed by the generic case.

We can add more data types, because the definitions are open . . .
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Viewing Booleans

Add a new constructor for representations of Booleans:

Bool :: Type Bool

Add a new equation to the definition of view:

data Bool :: ∗ where
False :: Bool
True :: Bool

type Bool′ a = Either () ()

fromBool :: Bool→ Bool′

fromBool False = Left ()
fromBool True = Right ()

toBool :: Bool′ → Bool
toBool (Left ()) = False
toBool (Right ()) = True

view (Bool a) = View (Either Unit Unit) fromBool toBool
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True :: Bool

type Bool′ a = Either () ()

fromBool :: Bool→ Bool′
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Intermediate summary

With an open type of type representations, we can add a new
constructor for each data type.

With an open view function, we can add a way to view each data
type as its structural representation.

Then all generic functions automatically work for the added data type.

If the generic functions are also open, we can add new specific
behaviour (if a data type has a non-standard definition of equality, for
example).
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An interface for exceptions

throw :: Exception→ a
catch :: IO a→ (Exception→ IO a)→ IO a

In Haskell, the type Exception is a library type with several predefined
constructors for frequent errors.

If an application-specific error arises (for example: an illegal key is
passed to a finite map lookup), we must try to find a close match
among the predefined constructors.

OCaml has a special construct for extensible exceptions, and
extensible exceptions have been proposed multiple times for Haskell,
too.

With open data types, there is no need for a special construct.
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An open data type for exceptions

open data Exception :: ∗

Declaring a new exception:

KeyNotFound :: Key → Exception

Raising the exception:

lookup k fm = . . . throw (KeyNotFound k) . . .

Catching the exception:

catch (. . . )
(λe→ case e of

KeyNotFound k→ . . .
→ return (throw e))

Note: We have to re-raise the exception at the end of the handler.
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Semantics: basic idea

Collapse everything into a single module.

Basically the same as we would have written in a closed setting.
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Problems

“Learn” from type classes.

Local functions?

Local open functions are not allowed.

Module system?

Open functions cannot be hidden selectively.

Pattern matching?

Best-fit pattern matching for open functions.
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Solutions

“Learn” from type classes.

Local functions?
Local open functions are not allowed.

Module system?
Open functions cannot be hidden selectively.

Pattern matching?
Best-fit pattern matching for open functions.
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Pattern matching

The function view is very nice, because it has non-overlapping patterns.
What if we extend a function that has overlapping patterns?

a variable pattern is a worse fit than a constructor pattern

use the best fit (not the first)

for multiple patterns, use a left-to-right bias

this allows the programmer to add default equations early (such as
the general case in eq)
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Example of best-fit pattern matching

f :: [Int]→ Either Int Char → . . .

f (x : xs) (Left 1)
f y (Right a)
f (0 : xs) (Right ’X’)
f [1] z
f [0] z
f [ ] z
f [0] (Left b)
f [0] (Left 2)
f y z
f [x] z

f :: [Int]→ Either Int Char → . . .

f [ ] z
f [0] (Left 2)
f [0] (Left b)
f [0] z
f (0 : xs) (Right ’X’)
f [1] z
f [x] z
f (x : xs) (Left 1)
f y (Right a)
f y z
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Andres Löh and Ralf Hinze Open data types and open functions 36



Overview

1 Motivation
Directions of extensibility
Encoding extensibility?

2 Syntax of open data types and open functions

3 Example applications
Generic programming
Exceptions

4 Semantics

5 Implementation

6 Conclusions
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A näıve implementation

Like semantics: collapse program into a single module.

Advantage: easy to implement, correct by construction.

Big disadvantage: no separate compilation; inefficient compilation for
large programs.

Resulting programs are still efficient.
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Implementation with separate compilation

All open data types, and the pattern match logic of open functions
are placed into a special module Closure.

The module Closure must be recompiled whenever any open data
type or open function changes.

The rest of the program is translated module by module. Each
module imports Closure, but only uses a small part of it (made
explicit in an interface). Only if the interface or the module itself
changes, the module has to be recompiled.

Advantage: allows separate compilation (mostly).

Disadvantage: slightly trickier to implement (but only a small
extension to GHC would be required).
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Conclusions

Very simple solution: no changes to the type system, no deep
semantics.

Flagging a data type or a function as open is not a wide-reaching
design decision, but a minor local syntactic change.

One easy implementation, one relatively efficient implementation.

Lots of related work, but most aim at solving a more complex
problem.

Our approach applies to many interesting examples.

Many properties of type classes used (some restrictions, too).

More properties of type classes could be transferred:

Partial evaluation of pattern matching.
Automatic inference of uniquely determined values.
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