
[Faculty of Science
Information and Computing Sciences]

1

Types
in Functional Programming Languages

Andres Löh

Department of Information and Computing Sciences
Utrecht University

UU General Math Colloquium – May 8, 2008

[Faculty of Science
Information and Computing Sciences]

2

Overview

I What are types?
I Advantages
I Disadvantages

I What are functional programming languages?
I Haskell
I algebraic data types
I parametric polymorphism

I Dependent types
I Formulas vs. programs
I Inductive families

[Faculty of Science
Information and Computing Sciences]

3

Types

A type is a property of a program.

“The program yields an integer.”

“The program takes a list of natural numbers and produces
another list that is a permutation of the original list.”

[Faculty of Science
Information and Computing Sciences]

4

Type systems

Decidable type checking

There is an algorithm that, given a type t and a program P, can
determine whether P has type t (written P :: t).

Static type checking

The algorithm for type checking does not require to produce
any effects that the program might have, and is thus
independent of a particular program run.

Type system

A language of static types for a specific programming language,
together with an algorithm that allows decidable type checking.

[Faculty of Science
Information and Computing Sciences]

4

Type systems

Decidable type checking

There is an algorithm that, given a type t and a program P, can
determine whether P has type t (written P :: t).

Static type checking

The algorithm for type checking does not require to produce
any effects that the program might have, and is thus
independent of a particular program run.

Type system

A language of static types for a specific programming language,
together with an algorithm that allows decidable type checking.

[Faculty of Science
Information and Computing Sciences]

4

Type systems

Decidable type checking

There is an algorithm that, given a type t and a program P, can
determine whether P has type t (written P :: t).

Static type checking

The algorithm for type checking does not require to produce
any effects that the program might have, and is thus
independent of a particular program run.

Type system

A language of static types for a specific programming language,
together with an algorithm that allows decidable type checking.

[Faculty of Science
Information and Computing Sciences]

5

Type system advantages

I Catch errors at compilation time

I Documentation / specification

I Optimisation

[Faculty of Science
Information and Computing Sciences]

6

Typical situations prevented by static types

I Applying a function to the wrong number of arguments

I Permuting the arguments of a function

I Forgetting the application of a (conversion) function

[Faculty of Science
Information and Computing Sciences]

7

Type system disadvantages

Classic type systems of mainstream languages (Pascal, C, Java,
Fortran, Cobol) have a number of problems:

I Limited reuse of code

I Inflexibility

I Verbosity

I Types don’t track effects

I Types reject correct programs (or accept bad programs)

[Faculty of Science
Information and Computing Sciences]

8

Limited reuse

Select the last element of an array:

int last (int[] a) {
return a[a.length− 1];
}
char last (char[] a) {

return a[a.length− 1];
}
bool last (bool[] a) {

return a[a.length− 1];
}

The same code has to be repeated for different types.

[Faculty of Science
Information and Computing Sciences]

9

Inflexibility

Classic type systems are inspired by hardware:

I some numeric types

I arrays/strings (one-dimensional, i.e., contiguous blocks of
memory)

I enumeration types (i.e., bit fields)

I records (sequence of values that is stored in a connected
block of memory)

I first-order functions (blocks of code we can jump to)

[Faculty of Science
Information and Computing Sciences]

10

Inflexibility (contd.)

But not all things map nicely to hardware:

I something that is either an integer or an exceptional value

I a higher-order function

I a tree

I a date vs. three natural numbers

I a credit card number vs. a phone number

I lists of functions from records to TEX documents

[Faculty of Science
Information and Computing Sciences]

11

Verbosity

Often, a large part of the syntax is taken up by the
administration of types:

int sum (int[] a) {
int i;
int temp = 0;
for (i = 0; i < a.length; i++)

temp = temp + a[i];
return temp;
}

I All the types are “obvious”, but we have to write them
down.

I The same code would work for other numeric types, but
again we would have to repeat the definition.

[Faculty of Science
Information and Computing Sciences]

11

Verbosity

Often, a large part of the syntax is taken up by the
administration of types:

int sum (int[] a) {
int i;
int temp = 0;
for (i = 0; i < a.length; i++)

temp = temp + a[i];
return temp;
}

I All the types are “obvious”, but we have to write them
down.

I The same code would work for other numeric types, but
again we would have to repeat the definition.

[Faculty of Science
Information and Computing Sciences]

12

Effects

int add0 (int x, int y) {
return x + y;
}

int add1 (int x, int y) {
launch missiles (now);
return x + y;
}

Both functions have the same type!

[Faculty of Science
Information and Computing Sciences]

12

Effects

int add0 (int x, int y) {
return x + y;
}

int add1 (int x, int y) {
launch missiles (now);
return x + y;
}

Both functions have the same type!

[Faculty of Science
Information and Computing Sciences]

12

Effects

int add0 (int x, int y) {
return x + y;
}

int add1 (int x, int y) {
launch missiles (now);
return x + y;
}

Both functions have the same type!

[Faculty of Science
Information and Computing Sciences]

13

Types are imprecise

There are many situations where the type system cannot see
that a program that looks wrong will not fail:

I pointer arithmetic

I placing elements of different types together in a vector

I C’s printf function:

printf ("%d", 7); prints a single number
printf ("%d\n%d", 7, 9); prints two numbers on two lines
printf ("%s", "foo"); prints a single string

[Faculty of Science
Information and Computing Sciences]

14

The unfortunate result

Limitations of specific languages are blamed on the concept of
static types.

Many so-called scripting languages (Perl, Python, Ruby, . . .)
are specifically lauded by programmers for having no (static)
types.

[Faculty of Science
Information and Computing Sciences]

14

The unfortunate result

Limitations of specific languages are blamed on the concept of
static types.

Many so-called scripting languages (Perl, Python, Ruby, . . .)
are specifically lauded by programmers for having no (static)
types.

[Faculty of Science
Information and Computing Sciences]

15

Are the problems solvable?

Not completely:

a decidable type system must necessarily reject sensible
programs.

if (riemann hypothesis holds ()){
print "Finally ...";
} else {

return "42" / 0;
}

Checking if the else-branch is executed requires running the
program. What if the program is interactive in some way?

[Faculty of Science
Information and Computing Sciences]

15

Are the problems solvable?

Not completely:

a decidable type system must necessarily reject sensible
programs.

if (riemann hypothesis holds ()){
print "Finally ...";
} else {

return "42" / 0;
}

Checking if the else-branch is executed requires running the
program. What if the program is interactive in some way?

[Faculty of Science
Information and Computing Sciences]

16

However . . .

All is not lost. We can improve significantly in all areas. With a
more powerful, lightweight, systematic type system we can

I allow more code reuse,

I reduce inflexibility,

I make most type annotations superfluous,

I track effects,

I be more precise.

[Faculty of Science
Information and Computing Sciences]

17

Haskell

I Functional programming languages (most notably Haskell)
have been ahead of imperative languages w.r.t. static type
systems.

I Some features from functional programming languages
have recently been incorporated into mainstream languages
such as Java and C#.

I We will look at Haskell concepts that address the problems
we described.

[Faculty of Science
Information and Computing Sciences]

18

History of Haskell

Lisp – McCarthy, 1960

SASL – Turner, 1976

Scheme – Sussman and Steele, 1978

ML – Milner, 1978

Miranda – Turner, 1985

Haskell – Haskell Committee, 1990

Haskell 98 – Haskell Committee, 1999

Haskell’ – Haskell Committee, 2009?

[Faculty of Science
Information and Computing Sciences]

18

History of Haskell

Lisp – McCarthy, 1960

SASL – Turner, 1976

Scheme – Sussman and Steele, 1978

ML – Milner, 1978

Miranda – Turner, 1985

Haskell – Haskell Committee, 1990

Haskell 98 – Haskell Committee, 1999

Haskell’ – Haskell Committee, 2009?

[Faculty of Science
Information and Computing Sciences]

18

History of Haskell

Lisp – McCarthy, 1960

SASL – Turner, 1976

Scheme – Sussman and Steele, 1978

ML – Milner, 1978

Miranda – Turner, 1985

Haskell – Haskell Committee, 1990

Haskell 98 – Haskell Committee, 1999

Haskell’ – Haskell Committee, 2009?

[Faculty of Science
Information and Computing Sciences]

18

History of Haskell

Lisp – McCarthy, 1960

SASL – Turner, 1976

Scheme – Sussman and Steele, 1978

ML – Milner, 1978

Miranda – Turner, 1985

Haskell – Haskell Committee, 1990

Haskell 98 – Haskell Committee, 1999

Haskell’ – Haskell Committee, 2009?

[Faculty of Science
Information and Computing Sciences]

19

A few Haskell facts

I General purpose functional programming language
I Several implementations, all free and open-source software:

I GHC (Glasgow University), now Microsoft Research –
industrial strength compiler and interpreter, implemented in
Haskell itself

I Hugs, interpreter, written in C
I EHC, in development at Utrecht

I Used for research and actual applications

I Can interface to other programming languages

I Lots of libraries available

I http://haskell.org

http://haskell.org

[Faculty of Science
Information and Computing Sciences]

20

Haskell type system concepts

I Parametric polymorphism allows code reuse

I Algebraic datatypes, a systematic type language and
higher-order functions get rid of most of the inflexibilities

I Type inference reduces verbosity

I All Haskell functions are pure – effects are tracked in the
type sytstem

[Faculty of Science
Information and Computing Sciences]

21

Parametric polymorphism

last :: ∀a.[a]→ a
last xs = xs !! (length xs− 1)

swap :: ∀a.∀b.(a, b)→ (b, a)
swap (x, y) = (y, x)

id :: ∀a.a→ a
id x = x

[Faculty of Science
Information and Computing Sciences]

21

Parametric polymorphism

last :: ∀a.[a]→ a
last xs = xs !! (length xs− 1)

swap :: ∀a.∀b.(a, b)→ (b, a)
swap (x, y) = (y, x)

id :: ∀a.a→ a
id x = x

[Faculty of Science
Information and Computing Sciences]

21

Parametric polymorphism

last :: ∀a.[a]→ a
last xs = xs !! (length xs− 1)

swap :: ∀a.∀b.(a, b)→ (b, a)
swap (x, y) = (y, x)

id :: ∀a.a→ a
id x = x

[Faculty of Science
Information and Computing Sciences]

22

Algebraic data types

Next to the built-in numeric types, we can define our own
datatype of Peano-style natural numbers as follows:

data N where
Zero :: N
Succ :: N→ N

Zero :: N
n :: N

Succ n :: N

plus :: N→ N→ N
plus m Zero = m
plus m (Succ n) = Succ (plus m n)

[Faculty of Science
Information and Computing Sciences]

22

Algebraic data types

Next to the built-in numeric types, we can define our own
datatype of Peano-style natural numbers as follows:

data N where
Zero :: N
Succ :: N→ N

Zero :: N
n :: N

Succ n :: N

plus :: N→ N→ N
plus m Zero = m
plus m (Succ n) = Succ (plus m n)

[Faculty of Science
Information and Computing Sciences]

22

Algebraic data types

Next to the built-in numeric types, we can define our own
datatype of Peano-style natural numbers as follows:

data N where
Zero :: N
Succ :: N→ N

Zero :: N
n :: N

Succ n :: N

plus :: N→ N→ N
plus m Zero = m
plus m (Succ n) = Succ (plus m n)

[Faculty of Science
Information and Computing Sciences]

23

Higher-order functions

foldNat :: ∀r.r→ (r→ r)→ N→ r
foldNat z s Zero = z
foldNat z s (Succ n) = s (foldNat z s n)
plus :: N→ N→ N
plus m = foldNat m Succ

mult :: N→ N→ N
mult m = foldNat Zero (plus m)
exp :: N→ N→ N
exp m = foldNat (Succ Zero) (mult m)

[Faculty of Science
Information and Computing Sciences]

23

Higher-order functions

foldNat :: ∀r.r→ (r→ r)→ N→ r
foldNat z s Zero = z
foldNat z s (Succ n) = s (foldNat z s n)
plus :: N→ N→ N
plus m = foldNat m Succ

mult :: N→ N→ N
mult m = foldNat Zero (plus m)
exp :: N→ N→ N
exp m = foldNat (Succ Zero) (mult m)

[Faculty of Science
Information and Computing Sciences]

24

Lists

Lists are built-in because they have special syntax, but
essentially are defined via:

data [] :: ∗ → ∗ where
[] :: ∀a.[a]
(:) :: ∀a.a→ [a]→ [a]

(→) :: ∗ → ∗ → ∗

1 : (2 : (3 : (4 : 5 : [])))
≡ 1 : 2 : 3 : 4 : 5 : []
≡ [1, 2, 3, 4, 5]
≡ [1 . . 5]

[Faculty of Science
Information and Computing Sciences]

24

Lists

Lists are built-in because they have special syntax, but
essentially are defined via:

data [] :: ∗ → ∗ where
[] :: ∀a.[a]
(:) :: ∀a.a→ [a]→ [a]

(→) :: ∗ → ∗ → ∗

1 : (2 : (3 : (4 : 5 : [])))
≡ 1 : 2 : 3 : 4 : 5 : []
≡ [1, 2, 3, 4, 5]
≡ [1 . . 5]

[Faculty of Science
Information and Computing Sciences]

24

Lists

Lists are built-in because they have special syntax, but
essentially are defined via:

data [] :: ∗ → ∗ where
[] :: ∀a.[a]
(:) :: ∀a.a→ [a]→ [a]

(→) :: ∗ → ∗ → ∗

1 : (2 : (3 : (4 : 5 : [])))
≡ 1 : 2 : 3 : 4 : 5 : []
≡ [1, 2, 3, 4, 5]
≡ [1 . . 5]

[Faculty of Science
Information and Computing Sciences]

25

Lists (contd.)

map :: ∀a b.(a→ b)→ [a]→ [b]
map f [] = []
map f (x : xs) = f x : map f xs

map f xs = [f x | x← xs]

filter :: ∀a.(a→ Bool)→ [a]→ [a]
filter p [] = []
filter p (x : xs)
| p x = x : filter p xs
| otherwise = filter p xs

filter p xs = [x | x← xs, p x]

[Faculty of Science
Information and Computing Sciences]

25

Lists (contd.)

map :: ∀a b.(a→ b)→ [a]→ [b]
map f [] = []
map f (x : xs) = f x : map f xs

map f xs = [f x | x← xs]

filter :: ∀a.(a→ Bool)→ [a]→ [a]
filter p [] = []
filter p (x : xs)
| p x = x : filter p xs
| otherwise = filter p xs

filter p xs = [x | x← xs, p x]

[Faculty of Science
Information and Computing Sciences]

25

Lists (contd.)

map :: ∀a b.(a→ b)→ [a]→ [b]
map f [] = []
map f (x : xs) = f x : map f xs

map f xs = [f x | x← xs]

filter :: ∀a.(a→ Bool)→ [a]→ [a]
filter p [] = []
filter p (x : xs)
| p x = x : filter p xs
| otherwise = filter p xs

filter p xs = [x | x← xs, p x]

[Faculty of Science
Information and Computing Sciences]

25

Lists (contd.)

map :: ∀a b.(a→ b)→ [a]→ [b]
map f [] = []
map f (x : xs) = f x : map f xs

map f xs = [f x | x← xs]

filter :: ∀a.(a→ Bool)→ [a]→ [a]
filter p [] = []
filter p (x : xs)
| p x = x : filter p xs
| otherwise = filter p xs

filter p xs = [x | x← xs, p x]

[Faculty of Science
Information and Computing Sciences]

26

More datatypes

data Maybe :: ∗ → ∗ where
Nothing :: ∀a.Maybe a
Just :: ∀a.a→ Maybe a

last :: ∀a.[a]→ Maybe a
last [] = Nothing
last xs = Just (xs !! (length xs− 1))

[Faculty of Science
Information and Computing Sciences]

26

More datatypes

data Maybe :: ∗ → ∗ where
Nothing :: ∀a.Maybe a
Just :: ∀a.a→ Maybe a

last :: ∀a.[a]→ Maybe a
last [] = Nothing
last xs = Just (xs !! (length xs− 1))

[Faculty of Science
Information and Computing Sciences]

27

More datatypes (contd.)

data Expr where
Num :: Z→ Expr
Add :: Expr→ Expr→ Expr
Mul :: Expr→ Expr→ Expr

eval :: Expr→ Z
eval (Num x) = x
eval (Add e1 e2) = eval e1 + eval e2

eval (Mul e1 e2) = eval e1 ∗ eval e2

[Faculty of Science
Information and Computing Sciences]

27

More datatypes (contd.)

data Expr where
Num :: Z→ Expr
Add :: Expr→ Expr→ Expr
Mul :: Expr→ Expr→ Expr

eval :: Expr→ Z
eval (Num x) = x
eval (Add e1 e2) = eval e1 + eval e2

eval (Mul e1 e2) = eval e1 ∗ eval e2

[Faculty of Science
Information and Computing Sciences]

28

Type inference

All the function type signatures are optional! If omitted, they
will be inferred.

swap (x, y) = (y, x)
mult m = foldNat Zero (plus m)
eval (Num x) = x
eval (Add e1 e2) = eval e1 + eval e2

eval (Mul e1 e2) = eval e1 ∗ eval e2

sum [] = 0
sum (x : xs) = x + sum xs

Function sum will get type ∀a.Num a⇒ [a]→ a, indicating
that it works for all numeric types.

[Faculty of Science
Information and Computing Sciences]

29

Type inference (contd.)

Type inference is particularly convenient for local functions:

sort [] = []
sort (x : xs) = insert x xs

where
insert x [] = [x]
insert x (y : ys)
| x 6 y = x : y : ys
| otherwise = y : insert x ys

Inference determines:

sort :: ∀a.Ord a⇒ [a]→ [a]
insert :: ∀a.Ord a⇒ a→ [a]→ [a]

[Faculty of Science
Information and Computing Sciences]

29

Type inference (contd.)

Type inference is particularly convenient for local functions:

sort [] = []
sort (x : xs) = insert x xs

where
insert x [] = [x]
insert x (y : ys)
| x 6 y = x : y : ys
| otherwise = y : insert x ys

Inference determines:

sort :: ∀a.Ord a⇒ [a]→ [a]
insert :: ∀a.Ord a⇒ a→ [a]→ [a]

[Faculty of Science
Information and Computing Sciences]

30

Hindley-Milner type system

I Haskell can be mapped to a (variant of the) lambda
calculus

I For some lambda calculi, efficient type inference algorithms
exist

I Damas-Hindley-Milner is one such system, on which also
ML is based

[Faculty of Science
Information and Computing Sciences]

31

Expressions

Programs/expressions:

e ::= x variables
| (e1 e2) application
| λx→ e abstraction
| let x = e1 in e2 local definitions (non-recursive)

Reduction:

let x = e1 in e2 e2[x 7→ e1]
((λx→ e1) e2) e1[x 7→ e2]

[Faculty of Science
Information and Computing Sciences]

31

Expressions

Programs/expressions:

e ::= x variables
| (e1 e2) application
| λx→ e abstraction
| let x = e1 in e2 local definitions (non-recursive)

Reduction:

let x = e1 in e2 e2[x 7→ e1]
((λx→ e1) e2) e1[x 7→ e2]

[Faculty of Science
Information and Computing Sciences]

32

Hindley-Milner types

Types:

t ::= C constants
| a variables
| t1 → t2 function types

Type schemes:

σ ::= ∀a.σ
| t

All quantification happens on the outside.

[Faculty of Science
Information and Computing Sciences]

33

Type system

Typing judgements are of the form:

Γ ` e :: σ

I.e., typing is a 3-place relation between an environment Γ
mapping variables to type schemes, an expression e and a type
scheme σ.

[Faculty of Science
Information and Computing Sciences]

34

Type rules

x :: σ ∈ Γ
Γ ` x :: σ

Γ ` e1 :: t1 → t2

Γ ` e2 :: t1

Γ ` (e1 e2) :: t2

Γ, x :: t1 ` e :: t2

Γ ` λx→ e :: t1 → t2

Γ ` e1 :: σ1

Γ, x :: σ1 ` e2 :: σ2

Γ ` let x = e1 in e2 :: σ2

a does not appear free in Γ
Γ ` e :: σ

Γ ` e :: ∀a.σ
Γ ` e :: ∀a.σ
Γ ` e :: σ[a 7→ t]

[Faculty of Science
Information and Computing Sciences]

35

Linking types and reduction

Theorem (Preservation)

If Γ ` e1 :: σ and e1 e2, then Γ ` e2 :: σ.

Theorem (Progress)

If ε ` e :: σ, then e is a lambda abstraction or it can be reduced.

Progress theorems state that the reduction for well-typed terms
does not get stuck in unexpected situations, and is more
interesting for slightly richer lambda calculi.

Such theorems are proved by mostly boring induction on the
structure of expressions or the structure of the typing
derivations.

[Faculty of Science
Information and Computing Sciences]

35

Linking types and reduction

Theorem (Preservation)

If Γ ` e1 :: σ and e1 e2, then Γ ` e2 :: σ.

Theorem (Progress)

If ε ` e :: σ, then e is a lambda abstraction or it can be reduced.

Progress theorems state that the reduction for well-typed terms
does not get stuck in unexpected situations, and is more
interesting for slightly richer lambda calculi.

Such theorems are proved by mostly boring induction on the
structure of expressions or the structure of the typing
derivations.

[Faculty of Science
Information and Computing Sciences]

35

Linking types and reduction

Theorem (Preservation)

If Γ ` e1 :: σ and e1 e2, then Γ ` e2 :: σ.

Theorem (Progress)

If ε ` e :: σ, then e is a lambda abstraction or it can be reduced.

Progress theorems state that the reduction for well-typed terms
does not get stuck in unexpected situations, and is more
interesting for slightly richer lambda calculi.

Such theorems are proved by mostly boring induction on the
structure of expressions or the structure of the typing
derivations.

[Faculty of Science
Information and Computing Sciences]

36

Type inference algorithm

There is an efficient algorithm that can compute a type scheme
for an expression and an environment: Γ ` e ::↑ σ.

Theorem (Soundness)

If Γ ` e ::↑ σ, then Γ ` e :: σ.

Theorem (Completeness)

If Γ ` e :: σ1, then Γ ` e ::↑ σ2 such that σ1 is an instance of σ2.

Every well-typed expression has a principal type.

Again, the proofs are by induction on the derivations.

[Faculty of Science
Information and Computing Sciences]

36

Type inference algorithm

There is an efficient algorithm that can compute a type scheme
for an expression and an environment: Γ ` e ::↑ σ.

Theorem (Soundness)

If Γ ` e ::↑ σ, then Γ ` e :: σ.

Theorem (Completeness)

If Γ ` e :: σ1, then Γ ` e ::↑ σ2 such that σ1 is an instance of σ2.

Every well-typed expression has a principal type.

Again, the proofs are by induction on the derivations.

[Faculty of Science
Information and Computing Sciences]

36

Type inference algorithm

There is an efficient algorithm that can compute a type scheme
for an expression and an environment: Γ ` e ::↑ σ.

Theorem (Soundness)

If Γ ` e ::↑ σ, then Γ ` e :: σ.

Theorem (Completeness)

If Γ ` e :: σ1, then Γ ` e ::↑ σ2 such that σ1 is an instance of σ2.

Every well-typed expression has a principal type.

Again, the proofs are by induction on the derivations.

[Faculty of Science
Information and Computing Sciences]

37

Effects

Effectful computations in Haskell are tagged by the type-system.

add0 :: Z→ Z→ Z
add0 x y = x + y

add1 :: Z→ Z→ IO Z
add1 x y = launch missiles >> return (x + y)

(>>) :: ∀a.IO a→ IO a→ IO a
(>>=) :: ∀a.IO a→ (a→ IO b)→ IO b

greet :: IO ()
greet = putStr "Who are you? " >>

getLine >>= λx→
putStrLn ("Hello " ++ x)

[Faculty of Science
Information and Computing Sciences]

37

Effects

Effectful computations in Haskell are tagged by the type-system.

add0 :: Z→ Z→ Z
add0 x y = x + y

add1 :: Z→ Z→ IO Z
add1 x y = launch missiles >> return (x + y)

(>>) :: ∀a.IO a→ IO a→ IO a
(>>=) :: ∀a.IO a→ (a→ IO b)→ IO b

greet :: IO ()
greet = putStr "Who are you? " >>

getLine >>= λx→
putStrLn ("Hello " ++ x)

[Faculty of Science
Information and Computing Sciences]

37

Effects

Effectful computations in Haskell are tagged by the type-system.

add0 :: Z→ Z→ Z
add0 x y = x + y

add1 :: Z→ Z→ IO Z
add1 x y = launch missiles >> return (x + y)

(>>) :: ∀a.IO a→ IO a→ IO a
(>>=) :: ∀a.IO a→ (a→ IO b)→ IO b

greet :: IO ()
greet = putStr "Who are you? " >>

getLine >>= λx→
putStrLn ("Hello " ++ x)

[Faculty of Science
Information and Computing Sciences]

38

Imprecision

While Haskell has even more type system features that allow it
to type many programs, the type system is still imprecise:

last :: ∀a.[a]→ a
last xs = xs !! (length xs− 1)

Valid, but fails on empty lists.

It is not easily possible in Haskell to describe types such as:

I lists of a specific number of elements (vectors)

I natural numbers between 3 and 7

I sorted lists

I . . .

[Faculty of Science
Information and Computing Sciences]

38

Imprecision

While Haskell has even more type system features that allow it
to type many programs, the type system is still imprecise:

last :: ∀a.[a]→ a
last xs = xs !! (length xs− 1)

Valid, but fails on empty lists.

It is not easily possible in Haskell to describe types such as:

I lists of a specific number of elements (vectors)

I natural numbers between 3 and 7

I sorted lists

I . . .

[Faculty of Science
Information and Computing Sciences]

39

Dependent types

Dependent types allow us to mix values and types:

Vec :: ∀a :: ∗.∀n :: N. ∗

A vector is a type (∗), parameterized by a type a and a natural
number n.

last :: ∀a :: ∗.∀n :: N.Vec a (Succ n)→ a
last (x : []) = x
last (x : xs) = last xs

No case for the empty list is required. It would even be rejected
by the type checker.

[Faculty of Science
Information and Computing Sciences]

39

Dependent types

Dependent types allow us to mix values and types:

Vec :: ∀a :: ∗.∀n :: N. ∗

A vector is a type (∗), parameterized by a type a and a natural
number n.

last :: ∀a :: ∗.∀n :: N.Vec a (Succ n)→ a
last (x : []) = x
last (x : xs) = last xs

No case for the empty list is required. It would even be rejected
by the type checker.

[Faculty of Science
Information and Computing Sciences]

40

Agda

I Dependent types have a history in proof assistants, as a
modelling language (Automath, NuPRL, ELF, Twelf, Coq).

I It is relatively new to consider dependent types for
programming (for example: Cayenne 1998, Epigram 2004,
Coq’s Program extension 2007).

I Agda2 is an ongoing experimental rewrite of the Agda
proof assistant specifically designed as a programming
language. It has Haskell-inspired syntax.

I http://appserv.cs.chalmers.se/users/ulfn/wiki/
agda.php or google for Agda2

http://appserv.cs.chalmers.se/users/ulfn/wiki/agda.php
http://appserv.cs.chalmers.se/users/ulfn/wiki/agda.php

[Faculty of Science
Information and Computing Sciences]

41

Program properties

With dependent types, you have a language on the type-level
that allows you to describe arbitrary properties of your program.

(≡) :: ∀a :: ∗.∀x :: a.∀y :: a. ∗

Now you can write down properties such as

zero right neutral :: ∀n :: N.n ≡ n + 0

reverse involutary ::
∀a :: ∗.∀n :: N.∀xs :: Vec a n.reverse (reverse xs) ≡ xs

Properties are types, programs are proofs:

zero right neutral 0 = refl
zero right neutral (Succ n) = cong Succ (zero right neutral n)

[Faculty of Science
Information and Computing Sciences]

41

Program properties

With dependent types, you have a language on the type-level
that allows you to describe arbitrary properties of your program.

(≡) :: ∀a :: ∗.∀x :: a.∀y :: a. ∗

Now you can write down properties such as

zero right neutral :: ∀n :: N.n ≡ n + 0

reverse involutary ::
∀a :: ∗.∀n :: N.∀xs :: Vec a n.reverse (reverse xs) ≡ xs

Properties are types, programs are proofs:

zero right neutral 0 = refl
zero right neutral (Succ n) = cong Succ (zero right neutral n)

[Faculty of Science
Information and Computing Sciences]

42

Curry-Howard correspondence

property type

proof program

truth inhabited type

falsity uninhabited type

conjunction pair

disjunction union type

implication function

negation function to the uninhabited type

universal quantification dependent function

existential quantification dependent pair

[Faculty of Science
Information and Computing Sciences]

42

Curry-Howard correspondence

property type

proof program

truth inhabited type

falsity uninhabited type

conjunction pair

disjunction union type

implication function

negation function to the uninhabited type

universal quantification dependent function

existential quantification dependent pair

[Faculty of Science
Information and Computing Sciences]

43

Inductive families

data Fin :: ∀n :: N. ∗ where
fz :: ∀n :: N. Fin (Succ n)
fs :: ∀n :: N.Fin n→ Fin (Succ n)

data (6) :: ∀m :: N.∀n :: N. ∗ where
leq refl :: ∀n :: N.n 6 n
leq step :: ∀m :: N.∀n :: N.m 6 n→ m 6 Succ n

decide leq :: ∀m :: N.∀n :: N.m 6 n ∨ n 6 m

Inductive families let you define arbitrary relations as types and
prove additional properties about the relation by induction on
the derivation.

[Faculty of Science
Information and Computing Sciences]

43

Inductive families

data Fin :: ∀n :: N. ∗ where
fz :: ∀n :: N. Fin (Succ n)
fs :: ∀n :: N.Fin n→ Fin (Succ n)

data (6) :: ∀m :: N.∀n :: N. ∗ where
leq refl :: ∀n :: N.n 6 n
leq step :: ∀m :: N.∀n :: N.m 6 n→ m 6 Succ n

decide leq :: ∀m :: N.∀n :: N.m 6 n ∨ n 6 m

Inductive families let you define arbitrary relations as types and
prove additional properties about the relation by induction on
the derivation.

[Faculty of Science
Information and Computing Sciences]

43

Inductive families

data Fin :: ∀n :: N. ∗ where
fz :: ∀n :: N. Fin (Succ n)
fs :: ∀n :: N.Fin n→ Fin (Succ n)

data (6) :: ∀m :: N.∀n :: N. ∗ where
leq refl :: ∀n :: N.n 6 n
leq step :: ∀m :: N.∀n :: N.m 6 n→ m 6 Succ n

decide leq :: ∀m :: N.∀n :: N.m 6 n ∨ n 6 m

Inductive families let you define arbitrary relations as types and
prove additional properties about the relation by induction on
the derivation.

[Faculty of Science
Information and Computing Sciences]

44

Capturing induction

Compare

foldNat :: ∀r.r→ (r→ r)→ N→ r
foldNat z s Zero = z
foldNat z s (Succ n) = s (foldNat z s n)

and

indNat :: ∀P :: N→ ∗. “motive”
P Zero→ base case
(∀n :: N.P n→ P (Succ n))→ induction step
∀n :: N.P n

with the same definition.

[Faculty of Science
Information and Computing Sciences]

45

Dependently-typed programming

Huge amount of possibilities:

I state and prove properties of your program within a
common framework

I devise algorithms that are correct by construction (run
your proofs)

I type very complicated functions (printf, or a function that
takes an abstract description of a language and produces a
parser for that language)

I . . .

[Faculty of Science
Information and Computing Sciences]

46

What about decidability and nontermination?

How will the typechecker determine whether

Vec a n ≡ Vec a (loop n)

Running loop might not terminate . . .

I Allow only total terminating programs

I Flag possibly non-terminating programs in the type system
(like IO in Haskell)

[Faculty of Science
Information and Computing Sciences]

46

What about decidability and nontermination?

How will the typechecker determine whether

Vec a n ≡ Vec a (loop n)

Running loop might not terminate . . .

I Allow only total terminating programs

I Flag possibly non-terminating programs in the type system
(like IO in Haskell)

[Faculty of Science
Information and Computing Sciences]

47

Research questions

I Efficient compilation of dependently-typed programs

I Presenting comprehensible error messages

I Organizing large amounts of theorems and properties

I Automating trivial proofs

I Datatype-generic programming

I . . .

[Faculty of Science
Information and Computing Sciences]

48

Conclusions

I Haskell is a mature general-purpose language with a
fantastic type system compared to mainstream languages.

I Haskell is very suitable to quickly try out ideas and get
stuff done.

I One always wants more. Dependently-typed programming
languages like Agda2 are the next step. They allow
programs and verification to live side-by-side. But many
interesting practical problems remain.

