
Guide2lhs2TeX
(for version 1.9)

Ralf Hinze
Institut für Informatik III, Universität Bonn

Römerstraße 164, 53117 Bonn, Germany
ralf@informatik.uni-bonn.de

Andres Löh
Universiteit Utrecht

Institute of Information and Computing Sciences
Utrecht University, P.O. Box 80.089
3508 TB Utrecht, The Netherlands

andres@cs.uu.nl

23rd January 2004

Contents

1 About lhs2TeX 3

2 Installing lhs2TeX 4

3 lhs2TeX operation 5

4 Overview over the different styles 5
4.1 Verbatim: “verb” style . 6
4.2 Space-preserving formatting with “tt” style 6
4.3 Proportional vs. Monospaced . 7
4.4 Alignment and formatting with “math” style 8
4.5 Complex layouts: “poly” style . 9
4.6 “poly” style is customizable . 10
4.7 The “code” and “newcode” styles . 10

5 Directives 11

1

6 Including files 11
6.1 The lhs2TeX “prelude” . 12

7 Formatting 12
7.1 Formatting single tokens . 13
7.2 Nested formatting . 14
7.3 Parametrized formatting directives . 15
7.4 (No) nesting with parametrized directives 15
7.5 Parentheses . 16
7.6 Local formatting directives . 17
7.7 Implicit formatting . 17
7.8 Formatting behaviour in different styles 18

8 Alignment in “poly” style 18
8.1 An example . 18
8.2 Accidental alignment . 19
8.3 The full story . 20
8.4 Indentation in “poly” style . 20
8.5 Interaction between alignment and indentation 22
8.6 Interaction between alignment and formatting 22
8.7 Centered and right-aligned columns . 22
8.8 Saving and restoring column information 23

9 Defining variables 25
9.1 Predefined variables . 25

10 Conditionals 25
10.1 Uses of conditionals . 26

11 Typesetting code beyond Haskell 26
11.1 Spacing . 26
11.2 Inline TEX . 27
11.3 AG code example . 27
11.4 Generic Haskell example . 28
11.5 Calculation example . 29

12 Calling hugs or ghci 30
12.1 Calling ghci – example . 30
12.2 Calling hugs – example . 31
12.3 Using a preprocessor . 31

13 Advanced customization 32

14 Pitfalls/FAQ 32

2

1 About lhs2TeX

The program lhs2TeX is a preprocessor that takes as input a literate Haskell source
file (or something sufficiently alike) and produces as output a formatted file that can
be further processed by LATEX.

For example, consider the following input file:

\documentclass{article}

%include lhs2TeX.fmt

%include lhs2TeX.sty

\begin{document}

This is the famous ‘‘Hello world’’ example,

written in Haskell:

\begin{code}

main :: IO ()

main = putStrLn "Hello, world!"

\end{code}

\end{document}

If we run the following two commands on it

$ lhs2TeX --poly HelloWorld.lhs > HelloWorld.tex

$ pdflatex HelloWorld.tex

then the resulting PDF file will look similar to

This is the famous “Hello world” example, written in Haskell:

main :: IO ()
main = putStrLn "Hello, world!"

The behaviour of lhs2TeX is highly customizable. For example, the argument --poly
in the call above specifies one of several different styles. Depending on the selected
style, lhs2TeX can perform quite different tasks. Here is a brief overview:

– verb (verbatim): format code completely verbatim
– tt (typewriter): format code verbatim, but allow special formatting of keywords,

characters, some functions, . . .
– math: mathematical formatting with basic alignment, highly customizable
– poly: mathematical formatting with mutliple alignments, highly customizable,

supersedes math
– code: delete all comments, extract sourcecode
– newcode (new code): delete all comments, extract sourcecode, but allow for

formatting, supersedes code

3

2 Installing lhs2TeX

The following instructions apply to Unix-like environments. However, lhs2TeX does
run on Windows systems, too. (If you would like to add installation instructions or
facilitate the installation procedure for Windows systems, please contact the authors.)

Unpack the archive. Assume that it has been unpacked into directory /somewhere.
Then say

$ cd /somewhere/lhs2TeX−1.9

$./configure

$ make

$ make install

You might need administrator permissions to perform the make install step. Al-
ternatively, you can select your own installation location by passing the --prefix
argument to configure:

$./configure --prefix=/my/local/programs

With lhs2TeX come a couple of library files (containing basic lhs2TeX formatting
directives) that need to be found by the lhs2TeX binary. The default search path is as
follows:

.

$HOME/lhs2TeX

$HOME/.lhs2TeX

$LHS2TEX

/usr/local/share/lhs2tex

/usr/local/share/lhs2TeX

/usr/local/lib/lhs2tex

/usr/local/lib/lhs2TeX

/usr/share/lhs2tex

/usr/share/lhs2TeX

/usr/lib/lhs2tex

/usr/lib/lhs2TeX

Here, $HOME and $LHS2TEX denote the current values of these two environment vari-
ables. Thus, if lhs2TeX is installed to a non-standard path, you might want to set the
environment variable $LHS2TEX to point to the directory where the files lhs2TeX.sty
and lhs2TeX.fmt have been installed to.

IMPORTANT: To be able to use “poly” style, the two LATEX packages
polytable.sty and lazylist.sty are required!

Both are included in the lhs2TeX distribution (they are not part of standard LATEX
distributions, although they are available from CTAN), and are usually installed dur-
ing the normal procedure. The configure script will determine whether a suitably

4

recent version of polytable is installed on your system, and if necessary, install
both polytable.sty and lazylist.sty to your TEX system. If this is not desired
or fails (because the script cannot detect your TEX installation properly), the instal-
lation of these files can be disabled by passing the option --disable-polytable to
configure. In this case, the two files must be manually installed to a location where
your TEX distribution will find them. Assuming that you have a local TEX tree at
/usr/local/share/texmf, this can usually be avhieved by placing the files in the di-
rectory /usr/local/share/texmf/tex/latex/polytable and subsequently running

$ mktexlsr

to update the TEX filename database.

3 lhs2TeX operation

When run on an input file, lhs2TeX classifies the source file into different blocks:
– Lines indicating a Bird-style literate program (i.e. lines beginning with either >

or <) are considered as code blocks.
– Lines that are surrounded by \begin{code} and \end{code} statements, or also

by \begin{spec} and \end{spec} statements, are considered as code blocks.
(Note that lhs2TeX does not care if both styles of a literate program are mixed
in one file. In this sense, it is more liberal than Haskell.)

– Text between two @ characters that is not in a code block is considered inline
verbatim. If a @ is desired to appear in text, it needs to be escaped: @@. There is
no need to escape @’s in code blocks.

– Text between two | characters that is not in a code block is considered inline
code. Again, | characters that should appear literally outside of code blocks
need to be escaped: ||.

– A % that is followed by the name of an lhs2TeX directive is considered as a di-
rective and may cause lhs2TeX to take special actions. Directives are described
in detail later.

– Some constructs are treated specially, such as occurrences of the TEX commands
\eval, \perform, \verb or of the LATEX environment verbatim.

– All the rest is classified as plain text.
Depending on the style in which it is called, lhs2TeX will treat these blocks in differ-
ent ways.

4 Overview over the different styles

In this section, we will demonstrate on a common example how the different styles
can be used. For each style, there will also be a short summary. Some of the points
listed in the summary are defaults for the particular style and can actually be changed.

5

4.1 Verbatim: “verb” style

In verb style, the code shows up in the formatted document exactly as it has been
entered, i.e. verbatim. All spaces are preserved, and a non-proportional font is used.

zip :: [a] -> [b] -> [(a,b)]

zip = zipWith (\a b -> (a,b))

zipWith :: (a->b->c) -> [a]->[b]->[c]

zipWith z (a:as) (b:bs) = z a b : zipWith z as bs

zipWith _ _ _ = []

partition :: (a -> Bool) -> [a] -> ([a],[a])

partition p xs = foldr select ([],[]) xs

where select x (ts,fs) | p x = (x:ts,fs)

| otherwise = (ts,x:fs)

One does not need lhs2TeX to achieve such a result. This style, however, does not
make use of an internal TEX verbatim construct. The implementation of verbatim en-
vironments in TEX is somewhat restricted, and the preprocessor approach may prove
more flexible in some situations. For example, it is easier to apply additional for-
matting instructions to the output as a whole, such as placing the code in a colored
box.

Verbatim summary
– formatting directives are ignored
– conditionals and includes are handled
– inline code, inline verbatim, and code blocks are all typeset completely verba-

tim, using a typewriter font
– all spaces in code blocks are preserved
– plain text is copied unchanged

4.2 Space-preserving formatting with “tt” style

The tt style is very similar to verb style, but applys a tiny bit of formatting to the code
and allows for more customizabilty:

6

zip :: [a] → [b] → [(a,b)]

zip = zipWith (λa b → (a,b))

zipWith :: (a→b→c) → [a]→[b]→[c]

zipWith z (a:as) (b:bs) = z a b : zipWith z as bs

zipWith _ _ _ = []

partition :: (a → Bool) → [a] → ([a],[a])

partition p xs = foldr select ([],[]) xs

where select x (ts,fs) | p x = (x:ts,fs)

| otherwise = (ts,x:fs)

By default, some of the Haskell symbols are expressed more naturally. For instance,
special symbols are being used for the arrows or the lambda. In addition, the user can
specify additional formatting directives to affect the appearance of certain identifiers.
In this way, keywords can be highlighted, user-defined Haskell infix operators can
be replaced by more appropriate symbols etc. In this style, the layout and all spaces
from the source file are still preserved, and a non-proportional font is used, as in verb
style.

Typewriter summary
– non-recursive formatting directives are obeyed
– conditionals and includes are handled
– inline verbatim is typeset as verbatim, whereas inline code and code blocks are

typeset almost verbatim, after formatting directives are applied, in a typewriter
font using some special symbols to “beautify” some Haskell operators.

– all spaces in code blocks are preserved
– plain text is copied unchanged

4.3 Proportional vs. Monospaced

Usually, there is a tradeoff between restricting oneself to the use of a typewriter font
and not using any formatting and using a proportional font, at the same time replac-
ing operators with mathematical symbols, using different font shapes to highlight
keywords etc. While the latter offers far more flexibility, the proportional font might
destroy (at least part of) the layout that the programmer has employed in order to
make the source code more readable.

Compare, for example, the previous two examples with the following result (this
is a negative example, lhs2TeX can do far better than that!!):

7

zip :: [a] → [b] → [(a, b)]
zip = zipWith (λa b → (a, b))
zipWith :: (a → b → c) → [a] → [b] → [c]
zipWith z (a : as) (b : bs) = z a b : zipWith z as bs
zipWith = []

partition :: (a → Bool) → [a] → ([a], [a])
partition p xs = foldr select ([], []) xs

where select x (ts, fs) | p x = (x : ts, fs)
| otherwise = (ts, x : fs)

While the indentation is kept (otherwise, for the layout sensitive Haskell it would be
even disastrous, because the code might no longer be valid), alignment that has been
present in the code lines has been lost. For example, in the input the user had decided
to align all equality symbols of all three function definitions, and also align them with
the “has-type” operator ::.

Without support from a tool like lhs2TeX, the horizontal positions of the equality
symbols in the formatted code are totally unrelated. A solution to this problem is of
course to put the Haskell code in a LATEX table. Doing this manually, though, is very
cumbersome and in some case still quite hard. The task of the formatted styles of
lhs2TeX is thus to spare the user the burden of cluttering up the code with formatting
annotations. Most of the time, completely un-annotated code can be used to achieve
good results, using the fonts you like while maintaining alignment information in the
code!

4.4 Alignment and formatting with “math” style

In prior versions of lhs2TeX, math style was the mode to use for formatted Haskell
code. There is one alignment column, often used to align the equality symbols of
several equations. Additionally, indentation is handled automatically. User-defined
formatting directives can be used to alter the formatting of identifiers, operators and
symbols in many places.

zip :: [a] → [b] → [(a, b)]
zip = zipWith (λa b → (a, b))
zipWith :: (a → b → c) → [a] → [b] → [c]
zipWith z (a : as) (b : bs) = z a b : zipWith z as bs
zipWith = []

partition :: (a → Bool) → [a] → ([a], [a])
partition p xs = foldr select ([], []) xs

where select x (ts, fs) | p x = (x : ts, fs)
| otherwise = (ts, x : fs)

The example shows that there is still a loss of alignment information compared to the
original verbatim example. The three arguments of the zipWith function as well as
the two guarded equations in the definition of select are not aligned. At the moment,

8

math style exists mainly to maintain compatibility with old documents. New features
may be added to poly style only.

“math” summary
– all formatting directives are obeyed
– conditionals and includes are handled
– inline verbatim is typeset as verbatim, whereas inline code and code blocks

are typeset using a proportional font, using mathematical symbols to represent
many Haskell operators.

– indentation in code blocks is preserved; furthermore, alignment on a single col-
umn is possible

– plain text is copied unchanged

4.5 Complex layouts: “poly” style

The poly style has been designed to lift the restrictions that math style still has. Mul-
tiple alignments and thus complex layouts are possible:

zip :: [a] → [b] → [(a, b)]
zip = zipWith (λa b → (a, b))
zipWith :: (a → b → c) → [a] → [b] → [c]
zipWith z (a : as) (b : bs) = z a b : zipWith z as bs
zipWith = []

partition :: (a → Bool) → [a] → ([a], [a])
partition p xs = foldr select ([], []) xs

where select x (ts, fs) | p x = (x : ts, fs)
| otherwise = (ts, x : fs)

If run in poly style, lhs2TeX produces LATEX code that makes use of the polytable
package, a package that has been specifically designed to fit the needs that arise
while formatting Haskell code. (If you are interested in the package or think that
it might be useful for other purposes, you are welcome to look at the documentation
for polytable. LINK!!)

Beyond the advanced alignment options, poly style has all the functionality of
math style. If poly style works for you, you should use it.

“poly” summary
– all formatting directives are obeyed
– conditionals and includes are handled
– inline verbatim is typeset as verbatim, whereas inline code and code blocks

are typeset using a proportional font, using mathematical symbols to represent
many Haskell operators.

– alignment can be flexibly specified; complex layouts are possible
– plain text is copied unchanged

9

4.6 “poly” style is customizable

The following example demonstrates that the visual appearance of “poly” style is in
no way dictated by lhs2TeX. There are several possibilities to modify the output by
means of formatting directivs. Here, we try to mimic tt style by choosing a typewriter
font again and using the same symbols that are default in tt style.

zip :: [a] → [b] → [(a, b)]

zip = zipWith (λa b → (a, b))

zipWith :: (a → b → c) → [a] → [b] → [c]

zipWith z (a : as) (b : bs) = z a b : zipWith z as bs

zipWith _ _ _ = []

partition :: (a → Bool) → [a] → ([a], [a])

partition p xs = foldr select ([], []) xs

where select x (ts, fs) | p x = (x : ts, fs)

| otherwise = (ts, x : fs)

In contrast to the tt style example, here the spaces in the code are not preserved – the
alignment is generated by the polytable package.

4.7 The “code” and “newcode” styles

These two styles are not for producing a LATEX source file, but rather produce a Haskell
file again. Everything that is not code is thrown away. In addition, newcode does a
few things extra. It applies formatting directives which can here be used as simple
macros on the Haskell source level, and it generates line pragmas for the Haskell
compiler that will result in error messages pointing to the original file (befoe pro-
cessing with lhs2TeX). The plain code style does not have this extra functionality.
Again, code is mainly intended for compatiblity with old documents. You should
use newcode.

“code” summary
– formatting directives are ignored
– conditionals and includes are handled (??)
– code blocks that are not specifications are copied unchanged
– plain text, inline code, specification code, and inline verbatim are discarded

“new code” summary
– all formatting directives are obeyed
– conditionals and includes are handled
– code blocks that are not specifications are, after applying formatting directives,

copied unchanged, prefixed by a line pragma indicating the original source lo-
cation of the code block

– plain text, inline code, specfication code, and inline verbatim are discarded

10

%include include a file
%format formatting directive for an identifer/operator
%{ begin of an lhs2TeX group
%} end of an lhs2TeX group
%let set a toggle
%if test a condition
%else second part of conditional
%elif else combined with if

%endif end of a conditional
%latency tweak alignment in poly mode
%separation tweak alignment in poly mode
%align set alignment column in math mode
%options set options for call of external program
%subst primitive formatting directive
%file set filename

Table 1: All lhs2TeX directives

5 Directives

A number of directives are understood by lhs2TeX. Some of the are ignored in some
of the styles, though. Directives can occur on all non-code lines and start with a %,
the TEX comment character, immediately followed by the name of the directive, plus
a list of potential arguments.

While lhs2TeX will remove directives that it has interpreted, it will simply ignore
all normal TEXcomments that are no directives. Therefore, if a directive is accidentally
misspelled, no error message will be raised in general.

Table 1 is a complete list of the directives that lhs2TeX knows about. These direc-
tives will be explained in more or less detail in the following sections.

6 Including files

Other files can be included by lhs2TeX. This is what the %include directive is for:

%include 〈filename〉

The specified file is searched for in the lhs2TeX source path which can be modified
using environment variables or the -P command line option (see also page 4). In-
cluded files are inserted literally at the position of the %include directive. Because of
that, the included files may not only contain other sources, but also other directives
(in particular, an included file may contain an %include directive again). The lhs2TeX
is entirely independent of TEX or Haskell includes/imports.

11

WARNING: Although relative and absolute pathnames can be specified as part of a
filename in an %include directive, the use of this feature is strongly discouraged. Set the

search path using the -P command line option to detect files to include.

If the -v command line flag is set, lhs2TeX will print the paths of the files it is
reading on screen while processing a file.

6.1 The lhs2TeX “prelude”

Several aspects of the behaviour of lhs2TeX are not hardcoded, but configurable via
directives. As a consequence, a minimal amount of functionality has to be defined for
lhs2TeX to be able to operate normally.

Essential definitions are collected in two files, lhs2TeX.fmt (containing basic di-
rectives) and lhs2TeX.sty (containing basic LATEX setup). These two files should be
included – directly or indirectly – in every file to be processed by lhs2TeX!

%include lhs2TeX.fmt

%include lhs2TeX.sty

It is perfectly possible to design own libraries that replace or extend these basic files
and to include those own libraries instead. It is not recommended, though, to edit
these two files directly. If you are not satisfied with some of the default definition,
create your own file to redefine selected part. This way, if lhs2TeX is updated, you
will still be able to benefit from improvements and changes in the “prelude” files.

There is a reason why the prelude is split into two files: if several files are to be
processed separately by lhs2TeX (for example, because they should be translated
using different styles), but all included into one TEX document, then TEX level in-
clusion can be used (using \input or a more sophisticated command). In this case,
lhs2TeX.fmt should be included in every single file (it contains the directives neces-
sary for lhs2TeX to proceed), whereas lhs2TeX.sty should only be included once in
the central document to be processed by LATEX (that file contains the setup to make
LATEX understand the output that lhs2TeX writes).

7 Formatting

Using the %format directive, tokens can be given a different appearance. The com-
plete syntax that is supported by lhs2TeX is quite complex, but we will look at many
different cases in detail.

%format 〈token〉 = 〈fmttoken〉∗ (format single tokens)
%format 〈lhs〉 = 〈fmttoken〉∗ (parametrized formatting)
%format 〈name〉 (implicit formatting)

〈lhs〉 ::= 〈name〉 〈arg〉∗ | (〈name〉) 〈arg〉∗
〈name〉 ::= 〈varname〉 | 〈conname〉
〈arg〉 ::= 〈varname〉 | (〈varname〉)
〈fmttoken〉 ::= "〈text〉" | 〈token〉

12

formatting statement. The first one can be used to change the appearance of most
functions and operators and a few other symbols. The second form is restricted to
named identifiers (both qualified and unqualified, but no symbolic operators); in
turn, such formatting directives can be parametrized. Finally, the third form provides
a syntactically lightweight way of formatting certain identifiers using some heuris-
tics. But let us look at some common examples first . . .

7.1 Formatting single tokens

The most important use for %format is to assign a symbol to an identifier or an oper-
ator. The input

%format alpha = "\alpha"

\begin{code}

tan alpha = sin alpha / cos alpha

\end{code}

produces output similar to the following:

tan α = sin α / cos α

The occurrences of alpha within the Haskell code portions of the input file are re-
placed by the TEX command \alpha and thus appear as “α” in the output.

A lot of formatting directives for frequently used identifiers or operators is already
defined in the lhs2TeX prelude. For instance, ++ is formatted as “++”, undefined is
formatted as “⊥”, and not is formatted as “¬”. If you look at lhs2TeX.fmt, you will
find the following directives that do the job:

%format ++ = "\plus "

%format undefined = "\bot "

%format not = "\neg "

Here, \plus refers to a LATEX macro defined in lhs2TeX.sty:

\newcommand{\plus}{\mathbin{+\!\!\!+}}

If you are not satisfied with any of the default definitions, just redefine them. A
%format directive scopes over the rest of the input, and if multiple directives for the
same token are defined, the last one is used. Thus, after

%format ++ = "\mathbin{\mathbf{+}}"

%format undefined = "\Varid{undefined}"

%format not = "!"

13

you get “+”, “undefined”, and “!”, respectively. Note that \Varid is a macro defined
in lhs2TeX.sty that can be used to typeset identifier names. It is predefined to be
the same as \mathit, but can be changed. Do not use identifier names in TEX replace-
ments directly. For instance,

%% THE FOLLOWING IS BAD:

%format undefined = "undefined"

will cause undefined to be typeset as “unde f ined”, which looks by far less nice than
“undefined”. It is also possible to define a symbol for infix uses of a function. The file
lhs2TeX.fmt contains:

%format ‘elem‘ = "\in "

This causes 2 ‘elem‘ [1,2] to be typeset as “2 ∈ [1, 2]”, whereas elem 2 [1,2] will
still be typeset as “elem 2 [1, 2]”.

7.2 Nested formatting

The right hand sides of formatting directives are not restricted to (TEX-)strings. They
can in fact be sequences of such strings or other tokens, separated by space. Such
other tokens will be replaced by their formatting again. For example, if you have
already defined a specific formatting

%format ~> = "\leadsto "

then you can later reuse that formatting while defining variants:

%format ~>* = ~> "^{" * "}"

As you can see, in this definition we reuse both the current formatting for ~> and for
. We now get “ ∗” for ~>, but should we decide to define

%format * = "\star "

later, we then also get “ ?”. Of course, you can use the same mechanism for non-
symbolic identifiers:

%format new = "\mathbf{new}"

%format text0 = text

%format text_new = text "_{" new "}"

will cause text0 to be typeset as “text”, and text_new will appear as “textnew”.

14

WARNING: There is no check for recursion in the formatting directives. Formatting
directives are expanded on-demand, therefore a directive such as

%% THE FOLLOWING IS BAD:

%format text = "\mathsf{" text "}"

will not produce “text” for text, but rather cause an infinite loop in lhs2TeX once used.

7.3 Parametrized formatting directives

Formatting directives can be parametrized. The parameters may occur once or more
on the right hand side. This form of a formatting directive is only available for al-
phanumeric identifiers. For example, the input

%format abs (a) = "\mathopen{|}" a "\mathclose{|}"

%format ~> = "\leadsto"

The |abs| function computes the absolute value of

an integer:

\begin{code}

abs(-2) ~> 2

\end{code}

produces output similar to

The |·| function computes the absolute value of an integer:

|−2| 2

If the function is used with two few arguments as in the text, a default symbol is
substituted (usually a \cdot, but that is cusomizable, cf. Section 13).

7.4 (No) nesting with parametrized directives

You cannot use a parametrized directive on the right hand side of another directive.
In summary, the right-hand sides of formatting directives are processed as follows:

– A string, enclosed in ", will be reproduced literally (without the quotes).
– A name, if it is the name of a parameter, will be replaced by the actual (format-

ted) argument.
– A name, if it is the name of a non-parametrized formatting directive, will be

replaced by that directive’s replacement.
– Any other name will be replaced by its standard formatting.

Note that the spaces between the tokens do not occur in the output. If you want
spaces, insert them explicitly.

15

7.5 Parentheses

Sometimes, due to formatting an identifier as a symbol, parentheses around argu-
ments or the entire function become unnecessary. Therefore, lhs2TeX can be in-
structed to drop parentheses around an argument by enclosing the argument on the
left hand side of the directive in parentheses. Parentheses around the entire function
are dropped if the entire left hand side of the directive is enclosed in parentheses. Let
us look at another example:

%format ^^ = "\;"

%format (ptest (a) b (c)) = ptest ^^ a ^^ b ^^ c

\begin{code}

ptest a b c

(ptest (a) (b) (c))

((ptest((a)) ((b)) ((c))))

\end{code}

The above input produces the following output:

ptest a b c
ptest a (b) c
(ptest (a) ((b)) (c))

Note that in this example a special purpose operator, ^^, is used to facilitate the in-
sertion of spaces on the right hand side of a formatting directive. Read more about
influencing spacing using formatting directives in Section 11.1. Another example in-
volving parentheses: the input

%format eval a = "\llbracket " a "\rrbracket "

\begin{code}

size (eval (2 + 2))

\end{code}

%format (eval (a)) = "\llbracket " a "\rrbracket "

\begin{code}

size (eval (2 + 2))

\end{code}

results in

size (J(2 + 2)K)

size J2 + 2K

16

7.6 Local formatting directives

Usually, formatting directives scope over the rest of the input. If that is not desired,
formatting directives can be placed into groups. Groups look as follows:

%{

. . .
%}

Formatting directives that are defined in a group scope only over the rest of the
current group. Groups can be nested. Groups in lhs2TeX do not interact with TEX
groups, so these different kinds of groups do not have to occur properly nested.

The effect of groups is made visible by the example input

In the beginning: |one|.\par

%format one = "\mathsf{1}"

Before the group: |one|.\par

%{

%format one = "\mathsf{one}"

Inside the group: |one|.\par

%}

After the group: |one|.

which appears as follows:

In the beginning: one.
Before the group: 1.
Inside the group: one.
After the group: 1.

7.7 Implicit formatting

The third syntactic form of the formatting directive, lacking a right hand side, can be
used to easily format a frequently occurring special case: only a variable (or construc-
tor) name that ends in a number or a prime ’ can be used in an implicit formatting
statement. The prefix will then be formatted as determined by the formatting direc-
tives in the input so far. The number will be added as an index, the prime character
as itself.

The following input contains some example:

%format omega = "\omega"

|[omega, omega13, omega13’]|\par

%format omega13

|[omega, omega13, omega13’]|\par

%format omega13’

|[omega, omega13, omega13’]|

\end{code}

17

The corresponding output is:

[ω, omega13, omega13′]
[ω, ω13, omega13′]
[ω, ω13, ω′

13]

7.8 Formatting behaviour in different styles

– Formatting directives are applied in math, poly, and newcode styles.
– In tt style, only non-parametrized directives apply.
– In verb and code styles, formatting directives are ignored.

A document can be prepared for processing in different styles using conditionals
(cf. Section 10).

8 Alignment in “poly” style

The second important feature of lhs2TeX next to the ability to change the appearance
of tokens is the possibility to maintain alignment in the code while using a propor-
tional font.

Use of this feature is relatively simple:
– Alignment is computed per code block.
– All tokens that start on the same column and are preceded by at least 2 spaces

are horizontally aligned in the output.
Using these simple rules, (almost) everything is possible, but it is very important to
verify the results and watch out for accidental alignments (i.e. tokens that get aligned
against intention).

8.1 An example

The following example shows some of the potential. This is the input:

> rep_alg = (\ _ −> \m −> Leaf m

> ,\ lfun rfun −> \m −> let lt = lfun m

> rt = rfun m

> in Bin lt rt

>)

> replace_min’ t = (cata_Tree rep_alg t) (cata_Tree min_alg t)

Look at the highlighted (grey) tokens. The lt will not appear aligned with the two
equality symbols, because it is preceded by only one space. Similarly, the m in the
first line after the Leaf constructor will not be aligned with the declarations and the
body of the let-statement, because it is preceded by only one space. Note furthermore
that the equality symbols for the main functions rep_alg and replace_min’ are sur-
rounded by two spaces on both sides, also on the right. This causes the comma and
the closing parenthesis to be aligned correctly.

18

Indeed, the output looks as follows:

rep alg = (λ → λm → Leaf m
, λlfun rfun → λm → let lt = lfun m

rt = rfun m
in Bin lt rt

)
replace min′ t = (cata Tree rep alg t) (cata Tree min alg t)

8.2 Accidental alignment

The main danger of the alignment heuristic is that it results in more alignments than
are intended. The following example input contains such a case:

%format <| = "\lhd "

> options :: [String] −> ([Class],[String])

> options = foldr (<|) ([],[])

> where "−align" <| (ds,s: as) = (Dir Align s : ds, as)

> (’−’:’i’:s) <| (ds, as) = (Dir Include s : ds, as)

> (’−’:’l’:s) <| (ds, as) = (Dir Let s : ds, as)

> s <| (ds, as) = (ds,s : as)

The grey tokens will be unintentionally aligned because they start on the same col-
umn, with two or more preceding spaces each. The output looks as follows:

options :: [String] → ([Class], [String])
options = foldr (C) ([], [])

where "-align" C (ds, s : as) = (Dir Align s : ds, as)
(’-’ : ’i’ : s)C (ds, as) = (Dir Include s : ds, as)
(’-’ : ’l’ : s)C (ds, as) = (Dir Let s : ds, as)
s C (ds, as) = (ds, s : as)

The “::” and the “=” have been aligned with the declarations of the where-clause.
This results in too much space between the two options tokens and the symbols. Even
worse, in this case the centering of the two symbols is destroyed by the alignment (cf.
Section 8.7), therefore “::” and “=” appear left-aligned, but not cleanly, because TEX
inserts a different amount of whitespace around the two symbols.

The solution to all this is surprisingly simple: just insert extra spaces in the input
to ensure that unrelated tokens start on different columns:

%format <| = "\lhd "

> options :: [String] −> ([Class],[String])

> options = foldr (<|) ([],[])

> where "−align" <| (ds,s: as) = (Dir Align s : ds, as)

> (’−’:’i’:s) <| (ds, as) = (Dir Include s : ds, as)

> (’−’:’l’:s) <| (ds, as) = (Dir Let s : ds, as)

> s <| (ds, as) = (ds,s : as)

19

This input produces the correct output:

options :: [String] → ([Class], [String])
options = foldr (C) ([], [])

where "-align" C (ds, s : as) = (Dir Align s : ds, as)
(’-’ : ’i’ : s)C (ds, as) = (Dir Include s : ds, as)
(’-’ : ’l’ : s)C (ds, as) = (Dir Let s : ds, as)
s C (ds, as) = (ds, s : as)

8.3 The full story

If you further want to customize the alignment behaviour, you can. Here is exactly
what happens:

– Alignment is computed per code block.
– Per code block there are a number of alignment columns.
– If a token starts in column n and is prefixed by at least “separation” spaces, then

n is an alignment column for the code block.
– If a token starts in an alignment column n and is prefixed by at least “latency”

spaces, then the token is aligned at column n.
– All tokens that are aligned at a specific column will appear aligned (i.e. at the

same horizontal position) in the output.
Both latency and separation can be modified by means of associated directives:

%separation 〈natural〉
%latency 〈natural〉

It can occasionaly be useful to increase the default settings of 2 and 2 for large code
blocks where accidental alignments become very likely! It does not really make sense
to set latency to a value that is strictly smaller than the separation, but you can do so
– there are no checks that the specified settings are sensible.

8.4 Indentation in “poly” style

Sometimes, lhs2TeX will insert additional space at the beginning of a line to reflect
indentation. The rule is described in the following.

If a line is indented in column n, then the previous code line is taken into account:
– If there is an aligned token at column n in the previous line, then the indented

line will be aligned normally.
– Otherwise, the line will be indendet with respect to the first aligned token in the

previous line to the left of column n.
The first example demonstrates the first case:

unionBy :: (a −> a −> Bool) −> [a] −> [a] −> [a]

unionBy eq xs ys = xs ++ foldl (flip (deleteBy eq))

(nubBy eq ys)

20

In this example, there is an aligned token in the previous line at the same column,
so everything is normal. The two highlighted parentheses are aligned, causing the
second line to be effectively indented:

unionBy :: (a → a → Bool) → [a] → [a] → [a]
unionBy eq xs ys = xs ++ foldl (flip (deleteBy eq))

(nubBy eq ys)

The next example demonstrates the second case. It is the same example, with one
space before the two previously aligned parentheses removed:

unionBy :: (a -> a -> Bool) -> [a] -> [a] -> [a]

unionBy eq xs ys = xs ++ foldl (flip (deleteBy eq))

(nubBy eq ys)

Here, there is no aligned token in the previous line at the same column. Therefore,
the third line is indented with respect to the first aligned token in the previous line to
the left of that column, which in this case happens to be the xs:

unionBy :: (a → a → Bool) → [a] → [a] → [a]
unionBy eq xs ys = xs ++ foldl (flip (deleteBy eq))

(nubBy eq ys)

Sometimes, this behaviour might not match the intention of the user, especially in
cases as above, where there really starts a token at the same position in the previous
line, but is not preceded by enough spaces. Always verify the output if the result
looks as desired.

The amount of space that is inserted can be modified. A call to the TEX control se-
quence \hsindent is inserted at the appropriate position in the output, which gets as
argument the column difference in the source between the token that is indented, and
the base token. In the situation of the above exmple, the call is \hsindent{12}. The
default definition in lhs2TeX.sty ignores the argument and inserts a fixed amount
of space:

\newcommand{\hsindent}[1]{\quad}

Here is another example that shows indentation in action, the Haskell standard
function scanr1 written using only basic pattern matching:

scanr1 :: (a −> a −> a) −> [a] −> [a]

scanr1 f xxs = case xxs of

x:xs −> case xs of

[] −> [x]

_ −> let

qs = scanr1 f xs

in

case qs of

q:_ −> f x q : qs

21

And the associated output:

scanr1 :: (a → a → a) → [a] → [a]
scanr1 f xxs = case xxs of

x : xs → case xs of
[] → [x]
→ let

qs = scanr1 f xs
in

case qs of
q : → f x q : qs

8.5 Interaction between alignment and indentation

In rare cases, the indentation heuristic can lead to surprising results. This is an exam-
ple:

%format foo = verylongfoo

\begin{code}

test 1

foo bar

2

\end{code}

And its output:

test 1
verylongfoo bar

2

Here, the large amount of space between test and 1 might be surprising. However,
the 1 is aligned with the 2, but 2 is also indented with respect to bar, so everything is
according to the rules. The “solution” is to verify if both the alignment between 1 and
2 and the indentation of the 2 are intended, and to remove or add spaces accordingly.

8.6 Interaction between alignment and formatting

If a token at a specific column is typeset according to a formatting directive, then the
first token of the replacement text inherits the column position of the original token.
The other tokens of the replacement text will never be aligned. Actual arguments of
parametrized formatting directives keep the column positions they have in the input.

8.7 Centered and right-aligned columns

Under certain circumstances lhs2TeX decides to typeset a column centered instead of
left-aligned. This happens if the following two conditions hold:

22

l left-align column
c center column
r right-align column

p{〈dimen〉} make column of fixed width 〈dimen〉
@@{〈tex〉} can be used before or after the letter specifying alignment to suppress

inter-column space and typeset 〈tex〉 instead; note that this is usually
achieved using just one @, but as lhs2TeX interprets the @, it must be es-
caped

>{〈tex〉} can be used before the letter specifying the alignment to insert 〈tex〉 di-
rectly in front of the entry of the column

<{〈tex〉} can be used after the letter specifying the alignment to insert 〈tex〉 directly
after the entry of the column

Table 2: Column specifiers for \aligncolumn

– There is at most one token per line that is associated with the column.
– At least one of the tokens associated with the column is a symbol.

In most cases, this matches the intention. If it does not, there still might be the possi-
bility to trick lhs2TeX to do the right thing:

– Change the alignment behaviour of the column using \aligncolumn (see be-
low).

– If the column is centered but should not be, add extra tokens that are formatted
as nothing that will be associated with the column (see also Section 11.1 about
spacing).

– If the column should be centered but is left-aligned, it is sometimes possible
to use a symbol instead of an alphanumeric identifier, and add a formatting
directive for that newly introduced symbol.

The syntax of the \aligncolumn command is:

\aligncolumn{〈integer〉}{〈column-specifier〉}

The 〈integer〉 denotes the number (i.e. as displayed by the editor) of a column. Note
that lhs2TeX starts counting columns at 1. As 〈column-specifier〉 one can use about the
same strings that one can use to format a column in a tabular environment using
the LATEX array (LINK!!) package. Table 2 has a short (and not necessarily complete)
overview.

ADD EXAMPLE!!

8.8 Saving and restoring column information

It is possible to share alignment information between different code blocks. This can
be desireable, especially when one wants to interleave the definition of a single func-
tion with longer comments. This feature is implemented on the TEX level (the com-
mands are defined in lhs2TeX.sty).

23

Here is an example of its use:

\savecolumns

\begin{code}

intersperse :: a -> [a] -> [a]

intersperse _ [] = []

intersperse _ [x] = [x]

\end{code}

The only really interesting case is the one for lists

containing at least two elements:

\restorecolumns

\begin{code}

intersperse sep (x:xs) = x : sep : intersperse sep xs

\end{code}

As output we get:

intersperse :: a → [a] → [a]
intersperse [] = []
intersperse [x] = [x]

The only really interesting case is the one for lists containing at least two elements:

intersperse sep (x : xs) = x : sep : intersperse sep xs

Compare this to the output that would be generated without the \savecolumns and
\restorecolumns commands:

intersperse :: a → [a] → [a]
intersperse [] = []
intersperse [x] = [x]

The only really interesting case is the one for lists containing at least two elements:

intersperse sep (x : xs) = x : sep : intersperse sep xs

IMPORTANT: If this feature is used, it may require several runs of LATEX until all code
blocks are correctly aligned. Watch out for warnings of the polytable package that tell

you to rerun LATEX!

24

9 Defining variables

One can define or define flags (or variables) by means of the %let directive.

%let 〈varname〉 = 〈expression〉
〈expression〉 ::= 〈application〉 〈operator〉 〈application〉∗
〈application〉 ::= not? 〈atom〉
〈atom〉 ::= 〈varid〉 | True | False | 〈string〉 | 〈numeral〉 | (〈expression〉)
〈operator〉 ::= && | || | == | /= | < | <= | >= | > | ++ | + | - | * | /

Expressions are built from booleans (either True or False), numerals (integers, but
also decimal numbers) and previously defined variables using some fixed set of builtin
operators. The expression will be evaluated completely at the time the %let directive
is processed. If an error occurs during evaluation, lhs2TeX will fail.

Variables can also be passed to lhs2TeX from the operating system level by using
the -l or -s command line options.

The main use of variables is in conditionals (cf. Section 10). At the moment, there
is no way to directly use the value of a variable in a %format directive.

9.1 Predefined variables

In every run of lhs2TeX, the version of lhs2TeX is available as a numerical value in
the predefined variable version. Similarly, the current style is available as an integer
in the predefined variable style. There also are integer variables verb, tt, math, poly,
code, and newcode predefined that can be used to test style.

It is thus possible to write documents in a way that they can be processed beauti-
fully in different styles, or to make safe use of new lhs2TeX features by checking its
version first.

10 Conditionals

Boolean expressions can be used in conditionals. The syntax of an lhs2TeX condi-
tional is

%if 〈expression〉
. . .
%elif 〈expression〉
. . .
%else

. . .
%endif

where the %elif and %else directives are optional. There may be arbitrarily many
%elif directives. When an %if directive is encountered, the expression is evaluated,
and depending on the result of the evaluation of the expression, only the then or only
the else part of the conditional is processed by lhs2TeX, the other part is ignored.

25

10.1 Uses of conditionals

These are some of the most common uses of conditionals:
– One can have different versions of one paper in one (set of) source file(s). De-

pending on a flag, lhs2TeX can produce either the one or the other. Because the
flag can be defined via a command line option (cf. Section 9), no modification
of the source is necessary to switch versions.

– Code that is needed to make the Haskell program work but that should not
appear in the formatted article (module headers, auxiliary definitions), can be
enclosed between %if False and %endif directives.

– Alternatively, if Haskell code has to be annotated for lhs2TeX to produce aes-
thetically pleasing output, one can define different formatting directives for the
annotation depending on style (poly or newcode). Both code and TEX file can
then still be produced from a common source! Section 11.4 contains an example
that puts this technique to use.

The lhs2TeX.fmt and lhs2TeX.sty files use conditionals to include different direc-
tives depending on the style selected, but they also use conditionals to provide addi-
tional or modified behaviour if some flags are set. These flags are underlineKeywords,
spacePreserving, meta (activate a number of additional formatting directives), array
(use array environment instead of tabular to format code blocks in math style; use
parray instead of pboxed in poly style), latex209 (adapt for use with LATEX 2.09
(DOES IT WORK?)), euler, and standardsymbols. TODO: document the purpose of
these flags better. It is likely that these flags will be replaced by a selection of library
files that can be selectively included in documents in future versions of lhs2TeX.

11 Typesetting code beyond Haskell

11.1 Spacing

There is no full Haskell parser in lhs2TeX. Instead, the input code is only lexed and
subsequently parsed by an extremely simplified parser. The main purpose of the
parser is to allow a simple heuristic where to insert spaces into the output while in
math or poly style.

The disadvantage is that in rare cases, this default spacing produces unsatisying
results. However, there is also a big advantage: dialects of Haskell can be processed
by lhs2TeX, too. In theory, even completely different languages can be handled. The
more difference between Haskell and the actual input language, the more tweaking
is probably necessary to get the desired result.

An easy trick to modify the behaviour of lhs2TeX is to insert “dummy” operators
that do not directly correspond to constructs in the input language, but rather provide
hints to lhs2TeX on how to format something. For instance, spacing can be guided
completely by the following two formatting directives:

%format ^ = " "

%format ^^ = "\;"

26

Use ^ everywhere where no space is desired, but the automatic spacing of lhs2TeX
would usually place one. Conversely, use ^^ everywhere where a space is desired,
but lhs2TeX does usually not place one.

As described in Section 10, one can use conditionals to format such annotated input
code in both poly (or math) and newcode style to generate both typeset document
and code with annotation remove from a single source file. For this to work correctly,
one would define

%if style == newcode

%format ^ =

%format ^^ = " "

%else

%format ^ = " "

%format ^^ = "\;"

%endif

as an extended version of the above. This instructs lhs2TeX to ignore ^ and replace
^^ by a single space while in newcode style, and to adjust spacing in other styles, as
before.

The examples in the following subsections show these directives in use.

11.2 Inline TEX

Another possibility that can help to trick lhs2TeX into doing things it normally doesn’t
want to is to insert inline TEX code directly into the code block by using a special form
of Haskell comment:

{-"〈tex〉"-}

If this construct appears in a code block, then 〈tex〉 is inserted literally into the out-
put file. The advantage of this construct over a dummy operator is that if the input
language is indeed Haskell, one does not need to sacrifice the syntactic validity of the
source program for nice formatting. On the other hand, inline TEX tends to be more
verbose than an annotation using a formatting directive.

11.3 AG code example

Here is an example that shows how one can typeset code of the Utrecht University
Attribute Grammar (UUAG) (LINK!!) system, which is based on Haskell, but adds
additional syntactic constructs.

The input

27

%format ^ = " "

%format ^^ = "\;"

%format ATTR = "\mathbf{ATTR}"

%format SEM = "\mathbf{SEM}"

%format lhs = "\mathbf{lhs}"

%format . = "."

%format * = "\times "

\begin{code}

ATTR Expr Factor [^^ | ^^ | numvars : Int]

ATTR Expr Factor [^^ | ^^ | value : Int]

SEM Expr

| Sum

lhs . value = @left.value + @right.value

. numvars = @left.numvars + @right.numvars

SEM Factor

| Prod

lhs . value = @left.value * @right.value

. numvars = @left.numvars + @right.numvars

\end{code}

prodces the following output:

ATTR Expr Factor [| | numvars : Int]
ATTR Expr Factor [| | value : Int]
SEM Expr

| Sum
lhs.value = @left.value + @right.value

.numvars = @left.numvars + @right.numvars
SEM Factor

| Prod
lhs.value = @left.value × @right.value

.numvars = @left.numvars + @right.numvars

11.4 Generic Haskell example

Another example of a Haskell variant that can be typeset using lhs2TeX using some
annotations is Generic Haskell (LINK!!).

This is a possible input file, including the directives necessary to be able to process
it in both newcode and poly style.

28

%if style == newcode
%format ^
%format ^^ = " "
%format ti(a) = "{|" a "|}"
%format ki(a) = "{[" a "]}"
%else
%format ^ = " "
%format ^^ = "\;"
%format ti(a) = "\lty " a "\rty "
%format ki(a) = "\lki " a "\rki "
\newcommand{\lty}{\mathopen{\{\mskip-3.4mu||}}
\newcommand{\rty}{\mathclose{||\mskip-3.4mu\}}}
\newcommand{\lki}{\mathopen{\{\mskip-3.5mu[}}
\newcommand{\rki}{\mathclose{]\mskip-3.5mu\}}}
%format t1
%format t2
%format a1
%format a2
%format r_ = "\rho "
%format s_ = "\sigma "
%format k_ = "\kappa "
%format forall a = "\forall " a
%format . = "."
%format mapa = map "_{" a "}"
%format mapb = map "_{" b "}"
%format :*: = "\times "
%endif
\begin{code}
type Map^ki(*) t1 t2 = t1 -> t2
type Map^ki(r_ -> s_) t1 t2 = forall a1 a2. Map^ki(r_) a1 a2

-> Map^ki(s_) (t1 a1) (t2 a2)

map^ti(t :: k_) :: Map^ki(k_) t t
map^ti(Unit) Unit = Unit
map^ti(Int) i = i
map^ti(Sum) mapa mapb (Inl a) = Inl (mapa a)
map^ti(Sum) mapa mapb (Inr b) = Inr (mapb b)
map^ti(Prod) mapa mapb (a :*: b) = mapa a :*: mapb b
\end{code}

Processed in poly style, the output looks as follows:

type Map{[∗]} t1 t2 = t1 → t2
type Map{[ρ → σ]} t1 t2 = ∀a1 a2.Map{[ρ]} a1 a2

→ Map{[σ]} (t1 a1) (t2 a2)

map{|t :: κ|} :: Map{[κ]} t t
map{|Unit|} Unit = Unit
map{|Int|} i = i
map{|Sum|} mapa mapb (Inl a) = Inl (mapa a)
map{|Sum|} mapa mapb (Inr b) = Inr (mapb b)
map{|Prod|} mapa mapb (a × b) = mapa a × mapb b

11.5 Calculation example

ADD THIS!!

29

12 Calling hugs or ghci

It is possible to call ghci or hugs using the %options directive. In all but the two code
styles, lhs2TeX looks for calls to the TEX commands \eval and \perform and feeds
their arguments to the Haskell interpreter selected.

The current input file will be the active module. This has a couple of consequences:
on the positive side, values defined in the current source file may be used in the ex-
pressions; on the negative side, the feature will only work if the current file is accepted
as legal input by the selected interpreter.

If the command line in the %options directive starts with ghci, then lhs2TeX as-
sumes that ghci is called; otherwise, it assumes that hugs is called. Depending on the
interpreter, lhs2TeX will use some heuristics to extract the answer from the output
of the interpreter. After this extraction, the result will either be printed as inline ver-
batim (for a \perform) or as inline code (for \eval), to which formatting directives
apply.

WARNING: This feature is somewhat fragile: different versions of ghci and hugs show
different behaviour, and the extraction heuristics can sometimes fail. Do not expect too

much from this feature.

12.1 Calling ghci – example

The following input shows an example of how to call ghci:

%options ghci -fglasgow-exts

> fix :: forall a. (a -> a) -> a

> fix f = f (fix f)

This function is of type \eval{:t fix},

and |take 10 (fix (’x’:))|

evaluates to \eval{take 10 (fix (’x’:))}.

The option -fglasgow-exts is necessary to make ghci accept the forall keyword (it
only serves as an example here how to pass options to the interpreter). The output
will look similar to this:

fix :: ∀a.(a → a) → a
fix f = f (fix f)

This function is of type fix :: ∀a.(a → a) → a, and take 10 (fix (’x’:)) evaluates to
"xxxxxxxxxx".

Note that it is possible to pass interpreter commands such as :t to the external pro-
gram. Note furthermore the difference in output between an \eval and a \perform
command.

30

12.2 Calling hugs – example

The same could be achieved using hugs instead of ghci. For this simple example,
the output is almost indistinguishable, only that hugs usually does not print type
signatures using explicit quantification and tends to use different variable names.

%options hugs -98

> fix :: forall a. (a -> a) -> a

> fix f = f (fix f)

This function is of type \eval{:t fix},

and |take 10 (fix (’x’:))|

evaluates to \eval{take 10 (fix (’x’:))}.

The input is the same except for the changed %options directive. The output now
looks as follows:

fix :: ∀a.(a → a) → a
fix f = f (fix f)

This function is of type fix :: (a → a) → a, and take 10 (fix (’x’:)) evaluates to "xxxxxxxxxx".

12.3 Using a preprocessor

The situation is more difficult if the current lhs2TeX source file is not valid input to
the interpreter, because annotations were needed to format some Haskell extensions
satisfactory. The following input file makes use of Template Haskell, and uses the
formatting directives for both newcode and poly style. The %options directive in-
structs lhs2TeX to feed the input through a preprocessor, using the -pgmF option of
ghci. The preprocessor lhs2TeXpre is a very rudimentary shell script included in the
documentation directory of the distribution.

31

%format SPL(x) = $ (x)

%if style == newcode

%format QU(x) = [| x |]

%format ^^ = " "

%else

%format QU(x) = "\llbracket " x "\rrbracket "

%format ^^ = "\; "

%endif

%options ghci -fglasgow-exts -pgmF ./lhs2TeXpre -F

This is a rather stupid way of computing |42| using

Template Haskell:

> answer = SPL(foldr1 (\x y -> QU(SPL(x) + SPL(y))) (replicate 21 ^^ QU(2)))

The answer is indeed \eval{answer}.

This is the corresponding output:

This is a rather stupid way of computing 42 using Template Haskell:

answer = $(foldr1 (λx y → J$(x) + $(y)K) (replicate 21 J2K))

The answer is indeed 42.

13 Advanced customization

There is one directive that has not yet been described: %subst. This directive is used
by lhs2TeX to customize almost every aspect of its output. The average user will
and should not need to use a %subst directive, but if one wants to influence the very
nature of the code generated by lhs2TeX, the %subst directives provide a way to do
it.

If one would, for instance, want to generate output for another TEX format such as
plainTEX or ConTEXt, or if one would want to use a different package than polytable
to do the alignment on the TEX side, then the %subst directives are a good place to
start. The default definitions can be found in lhs2TeX.fmt.

Table 3 shows only a short description of the approximate use of each of the cate-
gories.

14 Pitfalls/FAQ

LATEX claims that the package polytable (or lazylist) cannot be found, or that
the version installed on your system is too old. Did you install polytable.sty (or

32

thinspace how to produce a small quantity of horizontal space
space how to produce a normal horizontal space
newline how to produce a new line inside a code block
verbnl how to produce a new line in lhs2TeX generated verbatim
blankline how to translate a blank line in a code block
dummy how to display a missing argument in a formatted function
spaces a how to format the whitespace contained in a
special a how to format the special character a
verb a how to format the (already translated) inline verbatim text a
verbatim a how to format an (already translated) verbatim block a
inline a how to format (already translated) inline code a
code a how to format an (already translated) code block a
conid a how to format an identifier starting with an upper-case character a
varid a how to format an identifier starting with a lower-case character a
consym a how to format a constructor symbol a
varsym a how to format a variable symbol a
numeral a how to format a numeral a
char a how to format a character literal a
string a how to format a literal string a
comment a how to format an (already translated) one-line comment a
nested a how to format an (already translated) nested comment a
pragma a how to format an (already translated) compiler pragma a
keyword a how to format the Haskell keyword a
column1 a how to format an (already translated) line a in one column in math style
hskip a how to produce a horizontal skip of a units
phantom a how to produce horizontal space of the width of the (already translated)

text a
column3 a how to format an (already translated) line a in three columns in math style
fromto b e a how to format a column starting at label b, ending at label e, containing

the (already translated) code a in poly style
column n a how to define a column of label n with (already processed) format string

a in poly style
centered the format string to use for a centered column
left the format string to use for a left-aligned column
dummycol the format string to use for the dummy column (a column that does not

contain any code; needed due to deficiencies of the polytable implemen-
tation)

indent n how to produce an indentation (horizontal space) of n units

Table 3: A short description of the %subst directives

33

lazylist.sty) in your TEX system manually? If you have absolutely no idea how
to do this, you may try to copy both polytable.sty and lazylist.sty from the
lhs2TeX distribution into your working directory.

Haskell strings are displayed without double quotes. This is a result from using an
old lhs2TeX.fmt file together with a new version of lhs2TeX. Usually, this stems from
the fact that there is an old version in the working directory. Now, lhs2TeX maintains
a search path for included files, thus usually a local old copy of lhs2TeX.fmt can be
removed.

Everytime at the end of processing a file, LATEX complains. This happens only
when using the \savecolumns feature. This is the result of a name clash between
the amsmath package with the lazylist package and will hopefully be fixed in a fu-
ture release of the lazylist package. Usually, a workaround is to load amsmath before
the lhs2TeX.sty file is included.

When I try to use “poly” style, LATEX sometimes complains with the error message
“there is no line here to end”. This is a bug in the polytable package for which there
is a workaround. TODO.

In “math” style, I have aligned several symbols on one column, but lhs2TeX still
won’t align the code block. Did you set the alignment column correctly using the
%align directive? Note also that lhs2TeX starts counting columns begining with 1,
whereas some editors might start counting with 0.

Large parts of the formatted file look completely garbled. Passages are formatted as
code or verbatim, although they are plain text. Conversely, things supposed to be
code or verbatim are typeset as text. You probably forgot multiple | or @ characters.
Because lhs2TeX identifies both the beginning and end of inline code or inline ver-
batim via the same character, one missing delimiter can confuse lhs2TeX and cause
large passages to be typeset in the wrong way. You should locate the first position in
the document where something goes wrong and look for a missing delimiter at the
corresponding position in the source file.

LATEX complains about a “nested \fromto” in “poly” style. This usually is a prob-
lem with one of your formatting directives. If you start a TEX group in one of your
directives but do not close it, then this error arises. You should not write such unbal-
anced formatting directives unless you make sure that they do never span an aligned
column. TODO: Write example.

34

	About lhs2TeX
	Installing lhs2TeX
	lhs2TeX operation
	Overview over the different styles
	Verbatim: ``verb'' style
	Space-preserving formatting with ``tt'' style
	Proportional vs. Monospaced
	Alignment and formatting with ``math'' style
	Complex layouts: ``poly'' style
	``poly'' style is customizable
	The ``code'' and ``newcode'' styles

	Directives
	Including files
	The lhs2TeX ``prelude''

	Formatting
	Formatting single tokens
	Nested formatting
	Parametrized formatting directives
	(No) nesting with parametrized directives
	Parentheses
	Local formatting directives
	Implicit formatting
	Formatting behaviour in different styles

	Alignment in ``poly'' style
	An example
	Accidental alignment
	The full story
	Indentation in ``poly'' style
	Interaction between alignment and indentation
	Interaction between alignment and formatting
	Centered and right-aligned columns
	Saving and restoring column information

	Defining variables
	Predefined variables

	Conditionals
	Uses of conditionals

	Typesetting code beyond Haskell
	Spacing
	Inline TeX
	AG code example
	Generic Haskell example
	Calculation example

	Calling hugs or ghci
	Calling ghci -- example
	Calling hugs -- example
	Using a preprocessor

	Advanced customization
	Pitfalls/FAQ

