
Extensible datatypes

Andres Löh

Institut für Informatik III, Universität Bonn

DGP days Utrecht, 25 August 2005

Andres Löh (U Bonn) Extensible datatypes DGP 2005 1 / 29

Overview

1 Motivation
Lightweight generic programming
Other applications of extensible datatypes

2 Open datatypes and functions
Open datatypes
Open functions
Open problems

3 Related work

Andres Löh (U Bonn) Extensible datatypes DGP 2005 2 / 29

Overview

1 Motivation
Lightweight generic programming
Other applications of extensible datatypes

2 Open datatypes and functions
Open datatypes
Open functions
Open problems

3 Related work

Andres Löh (U Bonn) Extensible datatypes DGP 2005 3 / 29

Generic programming via representation types

Hinze and Cheney: A lightweight implementation of generics and
dynamics

Also: Hinze’s Fun of Programming chapter

Idea: a value of type Rep a is a representation of type a; then use
value-level pattern matching to define functions that require a
type-level case construct

Andres Löh (U Bonn) Extensible datatypes DGP 2005 4 / 29

Implementation of representation types

1 pairs of isomorphisms

data Iso :: ∗ → ∗ → ∗ where I :: (a → b) → (b → a) → Iso a b

2 equality types

data Eq :: ∗ → ∗ → ∗ where P :: (∀f .f a → f b) → Eq a b

3 GADTs

data Eq :: ∗ → ∗ → ∗ where P :: Eq a a

Andres Löh (U Bonn) Extensible datatypes DGP 2005 5 / 29

Example

data Rep :: ∗ → ∗ where
RUnit :: Rep ()
RInt :: Rep Int
RChar :: Rep Char
REither :: Rep a → Rep b → Rep (Either a b)
R(,) :: Rep a → Rep b → Rep (a, b)

eq :: Rep a → a → a → Bool
eq RUnit () () = True
eq RInt n1 n2 = n1 ≡ n2

eq RChar c1 c2 = c1 ≡ c2

eq (REither ra rb) (Left a1) (Left a2) = eq ra a1 a2

eq (REither ra rb) (Right b1) (Right b2) = eq rb b1 b2

eq (REither ra rb) = False
eq (R(,) ra rb) (a1, b1) (a2, b2) = eq ra a1 a2 ∧ eq rb b1 b2

Andres Löh (U Bonn) Extensible datatypes DGP 2005 6 / 29

Example

data Rep :: ∗ → ∗ where
RUnit :: Rep ()
RInt :: Rep Int
RChar :: Rep Char
REither :: Rep a → Rep b → Rep (Either a b)
R(,) :: Rep a → Rep b → Rep (a, b)

eq :: Rep a → a → a → Bool
eq RUnit () () = True
eq RInt n1 n2 = n1 ≡ n2

eq RChar c1 c2 = c1 ≡ c2

eq (REither ra rb) (Left a1) (Left a2) = eq ra a1 a2

eq (REither ra rb) (Right b1) (Right b2) = eq rb b1 b2

eq (REither ra rb) = False
eq (R(,) ra rb) (a1, b1) (a2, b2) = eq ra a1 a2 ∧ eq rb b1 b2

Andres Löh (U Bonn) Extensible datatypes DGP 2005 6 / 29

Evaluation of the approach

This approach seems to have a number of advantages over other generic
programming approaches, such as Generic Haskell:

Lightweight, only modest extensions required. Implemented in GHC.

Value-level constructs can be reused (pattern matching, recursion).

Generic functions are first-class.

Andres Löh (U Bonn) Extensible datatypes DGP 2005 7 / 29

Higher-order generic functions

type GT = ∀a.Rep a → a → a

bu :: GT → Rep a → a → a
bu g RUnit () = g RUnit ()
. . .
bu g (R(,) ra rb) (a, b) = g (R(,) ra rb) (bu g ra a, bu g rb b)

incAge :: GT
incAge RInt n = n + 1
incAge x = x

bu incAge db

Andres Löh (U Bonn) Extensible datatypes DGP 2005 8 / 29

Higher-order generic functions

type GT = ∀a.Rep a → a → a

bu :: GT → Rep a → a → a
bu g RUnit () = g RUnit ()
. . .
bu g (R(,) ra rb) (a, b) = g (R(,) ra rb) (bu g ra a, bu g rb b)

incAge :: GT
incAge RInt n = n + 1
incAge x = x

bu incAge db

Andres Löh (U Bonn) Extensible datatypes DGP 2005 8 / 29

Higher-order generic functions

type GT = ∀a.Rep a → a → a

bu :: GT → Rep a → a → a
bu g RUnit () = g RUnit ()
. . .
bu g (R(,) ra rb) (a, b) = g (R(,) ra rb) (bu g ra a, bu g rb b)

incAge :: GT
incAge RInt n = n + 1
incAge x = x

bu incAge db

Andres Löh (U Bonn) Extensible datatypes DGP 2005 8 / 29

Extensibility?

What if

we want to apply a generic function to a new type that isn’t
expressible in terms of Rep (such as (→) or IO or any other abstract
type)?

the behaviour of a generic function on a specific datatype should not
follow the generic pattern?

Two possibilities:

1 Define a new representation datatype.

2 Extend the Rep datatype.

Andres Löh (U Bonn) Extensible datatypes DGP 2005 9 / 29

Extensibility?

What if

we want to apply a generic function to a new type that isn’t
expressible in terms of Rep (such as (→) or IO or any other abstract
type)?

the behaviour of a generic function on a specific datatype should not
follow the generic pattern?

Two possibilities:

1 Define a new representation datatype.

2 Extend the Rep datatype.

Andres Löh (U Bonn) Extensible datatypes DGP 2005 9 / 29

Define a new representation datatype

Probably shares a lot of code with the original Rep type.

We need to convert between real datatypes and their representations
for all representation types.

Most generic functions will use different representation types.

Higher-order generic functions are not feasible, because they’re tied to
one particular representation type.

Andres Löh (U Bonn) Extensible datatypes DGP 2005 10 / 29

Extend the Rep datatype

This is the solution usually taken in the papers.

It is usually required to adapt the functions such as eq and bu, too.

Andres Löh (U Bonn) Extensible datatypes DGP 2005 11 / 29

Example

Extend the Rep type with a case Embed to represent datatypes that can
be encoded using the other constructors.

data Rep :: ∗ → ∗ where
. . .

Embed :: Iso a b → Rep b → Rep a

An example of such a type is Bool :

rBool = Embed isoBool (REither RUnit RUnit)

The eq function can be extended to work with embedded types.

eq :: Rep a → a → a → Bool
eq . . .
eq (Embed (I ia→b ia→b) rb) a1 a2 = eq rb (ia→b a1) (ia→b a2)

Andres Löh (U Bonn) Extensible datatypes DGP 2005 12 / 29

Example

Extend the Rep type with a case Embed to represent datatypes that can
be encoded using the other constructors.

data Rep :: ∗ → ∗ where
. . .

Embed :: Iso a b → Rep b → Rep a

An example of such a type is Bool :

rBool = Embed isoBool (REither RUnit RUnit)

The eq function can be extended to work with embedded types.

eq :: Rep a → a → a → Bool
eq . . .
eq (Embed (I ia→b ia→b) rb) a1 a2 = eq rb (ia→b a1) (ia→b a2)

Andres Löh (U Bonn) Extensible datatypes DGP 2005 12 / 29

Example

Extend the Rep type with a case Embed to represent datatypes that can
be encoded using the other constructors.

data Rep :: ∗ → ∗ where
. . .

Embed :: Iso a b → Rep b → Rep a

An example of such a type is Bool :

rBool = Embed isoBool (REither RUnit RUnit)

The eq function can be extended to work with embedded types.

eq :: Rep a → a → a → Bool
eq . . .
eq (Embed (I ia→b ia→b) rb) a1 a2 = eq rb (ia→b a1) (ia→b a2)

Andres Löh (U Bonn) Extensible datatypes DGP 2005 12 / 29

Example – continued

Define a new constructor for a specific datatype:

data Rep :: ∗ → ∗ where
. . .

RBool :: Rep Bool

Now we can give a specific behaviour of eq for Bool :

eq Bool a1 a2 = False

We can also assign a default behaviour to eq:

embed :: Rep a → Rep a
embed RBool = rBool

eq :: Rep a → a → a → Bool
eq . . .
eq ra a1 a2 = eq (embed ra) a1 a2

Andres Löh (U Bonn) Extensible datatypes DGP 2005 13 / 29

Example – continued

Define a new constructor for a specific datatype:

data Rep :: ∗ → ∗ where
. . .

RBool :: Rep Bool

Now we can give a specific behaviour of eq for Bool :

eq Bool a1 a2 = False

We can also assign a default behaviour to eq:

embed :: Rep a → Rep a
embed RBool = rBool

eq :: Rep a → a → a → Bool
eq . . .
eq ra a1 a2 = eq (embed ra) a1 a2

Andres Löh (U Bonn) Extensible datatypes DGP 2005 13 / 29

Example – continued

Define a new constructor for a specific datatype:

data Rep :: ∗ → ∗ where
. . .

RBool :: Rep Bool

Now we can give a specific behaviour of eq for Bool :

eq Bool a1 a2 = False

We can also assign a default behaviour to eq:

embed :: Rep a → Rep a
embed RBool = rBool

eq :: Rep a → a → a → Bool
eq . . .
eq ra a1 a2 = eq (embed ra) a1 a2

Andres Löh (U Bonn) Extensible datatypes DGP 2005 13 / 29

Extend the Rep datatype – continued

Not supported by Haskell, because datatypes are closed.

We have to rewrite code that is scattered across multiple places and
modules.

As a result, it is not possible to

define a library for generic programming in this style

use this encoding as back-end for a language such as Generic Haskell,
where we want to support separate compilation

Andres Löh (U Bonn) Extensible datatypes DGP 2005 14 / 29

Extend the Rep datatype – continued

Not supported by Haskell, because datatypes are closed.

We have to rewrite code that is scattered across multiple places and
modules.

As a result, it is not possible to

define a library for generic programming in this style

use this encoding as back-end for a language such as Generic Haskell,
where we want to support separate compilation

Andres Löh (U Bonn) Extensible datatypes DGP 2005 14 / 29

Type classes?

Type classes are open.

However,

defining one class per generic function leads to generic functions that
are not first-class citizens anymore/again

defining generic functions via Hinze’s Generics for the masses does
not solve the extensibility problem

Andres Löh (U Bonn) Extensible datatypes DGP 2005 15 / 29

Generics for the masses

Definition of equality:

newtype Equality a = Equality {applyEquality :: a → a → Bool }
instance Generic Equality where

unit = Poly (λ() () → True)
int = Poly (λn1 n2 → n1 ≡ n2)
char = . . .
either = . . .
pair = . . .

eq :: (Rep a) ⇒ a → a → Bool
eq = applyEquality rep

Pro: One representation class.

Contra: The “cases” of the generic function are the methods of the
class. Classes cannot be extended with new methods.

Andres Löh (U Bonn) Extensible datatypes DGP 2005 16 / 29

Generics for the masses

Definition of equality:

newtype Equality a = Equality {applyEquality :: a → a → Bool }
instance Generic Equality where

unit = Poly (λ() () → True)
int = Poly (λn1 n2 → n1 ≡ n2)
char = . . .
either = . . .
pair = . . .

eq :: (Rep a) ⇒ a → a → Bool
eq = applyEquality rep

Pro: One representation class.

Contra: The “cases” of the generic function are the methods of the
class. Classes cannot be extended with new methods.

Andres Löh (U Bonn) Extensible datatypes DGP 2005 16 / 29

Other applications: Compilers

open Expr :: ∗ where
Const :: Int → Expr
Add :: Expr → Expr → Expr

eval :: Expr → Int
eval (Const n) = n
eval (Add x y) = eval x + eval y

open Expr :: ∗ where
Neg :: Expr → Expr

eval (Neg x) = negate (eval x)

Again, we have to extend both the datatype and the function.

Andres Löh (U Bonn) Extensible datatypes DGP 2005 17 / 29

Other applications: Compilers

open Expr :: ∗ where
Const :: Int → Expr
Add :: Expr → Expr → Expr

eval :: Expr → Int
eval (Const n) = n
eval (Add x y) = eval x + eval y

open Expr :: ∗ where
Neg :: Expr → Expr

eval (Neg x) = negate (eval x)

Again, we have to extend both the datatype and the function.

Andres Löh (U Bonn) Extensible datatypes DGP 2005 17 / 29

Other applications: Compilers – continued

This style of programming with open types is similar to AG programming:

data Expr | Const (n : Int)
| Add (x : Expr) (y : Expr)

attr Expr | eval : syn Int

sem Expr | Const lhs.eval = n
| Add lhs.eval = x .eval + y .eval

data Expr | Neg (x : Expr)

sem Expr | Neg lhs.eval = x .eval

There is, however, no direct correspondence for inherited attributes.

Andres Löh (U Bonn) Extensible datatypes DGP 2005 18 / 29

Other applications: Compilers – continued

This style of programming with open types is similar to AG programming:

data Expr | Const (n : Int)
| Add (x : Expr) (y : Expr)

attr Expr | eval : syn Int

sem Expr | Const lhs.eval = n
| Add lhs.eval = x .eval + y .eval

data Expr | Neg (x : Expr)

sem Expr | Neg lhs.eval = x .eval

There is, however, no direct correspondence for inherited attributes.

Andres Löh (U Bonn) Extensible datatypes DGP 2005 18 / 29

Other applications: Exceptions

open Exception

throwIO :: Exception → IO a
catch :: IO a → (Exception → IO a) → IO a

Whenever a new form of exception is needed, we can add a new
constructor to the Exception type.

The catch construct is generally used as follows:

catch (expr) (λe → case e of
SomeException . . . → . . .

→ throw e)

Andres Löh (U Bonn) Extensible datatypes DGP 2005 19 / 29

Other applications: Exceptions

open Exception

throwIO :: Exception → IO a
catch :: IO a → (Exception → IO a) → IO a

Whenever a new form of exception is needed, we can add a new
constructor to the Exception type.

The catch construct is generally used as follows:

catch (expr) (λe → case e of
SomeException . . . → . . .

→ throw e)

Andres Löh (U Bonn) Extensible datatypes DGP 2005 19 / 29

Overview

1 Motivation
Lightweight generic programming
Other applications of extensible datatypes

2 Open datatypes and functions
Open datatypes
Open functions
Open problems

3 Related work

Andres Löh (U Bonn) Extensible datatypes DGP 2005 20 / 29

Goals and problems

Goals:

We want open datatypes and functions.

We want extensibility across multiple modules.

Problems:

How to deal with export/import restrictions?

How to deal with pattern matching?

What about type inference?

How to implement open functions?

Andres Löh (U Bonn) Extensible datatypes DGP 2005 21 / 29

Goals and problems

Goals:

We want open datatypes and functions.

We want extensibility across multiple modules.

Problems:

How to deal with export/import restrictions?

How to deal with pattern matching?

What about type inference?

How to implement open functions?

Andres Löh (U Bonn) Extensible datatypes DGP 2005 21 / 29

Open datatypes

An open datatype is defined as follows:

open TypeName :: kind where
Constructor1 :: . . .
. . .

Multiple declarations for the same TypeName are possible.

The name TypeName is in the same namespace as all other datatypes.

The definition defines a new datatype if TypeName is not yet in
scope, it extends the datatype if TypeName is already in scope.

Implementation is probably less efficient than for closed datatypes,
but not really problematic.

Andres Löh (U Bonn) Extensible datatypes DGP 2005 22 / 29

Open functions

Functions on open datatypes are open, too. Consider eval :

eval :: Expr → Int
eval (Const n) = n
eval (Add x y) = eval x + eval y

eval (Neg x) = negate (eval x)

Open functions require a type signature.

If a type signature contains an open type, the function is open.

Andres Löh (U Bonn) Extensible datatypes DGP 2005 23 / 29

Open functions

Functions on open datatypes are open, too. Consider eval :

eval :: Expr → Int
eval (Const n) = n
eval (Add x y) = eval x + eval y

eval (Neg x) = negate (eval x)

Open functions require a type signature.

If a type signature contains an open type, the function is open.

Andres Löh (U Bonn) Extensible datatypes DGP 2005 23 / 29

Open functions

Functions on open datatypes are open, too. Consider eval :

eval :: Expr → Int
eval (Const n) = n
eval (Add x y) = eval x + eval y

eval (Neg x) = negate (eval x)

Open functions require a type signature.

If a type signature contains an open type, the function is open.

Andres Löh (U Bonn) Extensible datatypes DGP 2005 23 / 29

Implementing open functions – pattern matching

Haskell’s linear pattern matching is a problem for open functions,
because it is hard to define a linear order between different places
where the function is defined.

module M where {f :: . . .}
module I where { import M; f . . . = . . .}
module J where { import M; f . . . = . . .}
module X where { import I ; import J }

Even if we had a well-defined order, specifying a default case would
effectively close the function.

eval = 0

Andres Löh (U Bonn) Extensible datatypes DGP 2005 24 / 29

Best-fit rather than first-fit

The solution is similar to the approach taken for overlapping class
instances.

All branches of a function definition must have the same number of
arguments (already the case in Haskell 98).

The left-most best match is selected.

Therefore:

Each partial definition of an open function contributes a list of
cases/rules.

The cases are combined/ordered using the above rules for pattern
matching.

Andres Löh (U Bonn) Extensible datatypes DGP 2005 25 / 29

Example of best-fit pattern matching

f :: [Int] → Either Int Char → . . .

f (x : xs) (Left 1)
f y (Right a)
f (0 : xs) (Right ’X’)
f [1] z
f [0] z
f [] z
f [0] (Left b)
f [0] (Left 2)
f y z
f [x] z

Andres Löh (U Bonn) Extensible datatypes DGP 2005 26 / 29

Example of best-fit pattern matching

f :: [Int] → Either Int Char → . . .

f (x : xs) (Left 1)
f y (Right a)
f (0 : xs) (Right ’X’)
f [1] z
f [0] z
f [] z
f [0] (Left b)
f [0] (Left 2)
f y z
f [x] z

f :: [Int] → Either Int Char → . . .

f [] z
f [0] (Left 2)
f [0] (Left b)
f [0] z
f (0 : xs) (Right ’X’)
f [1] z
f [x] z
f (x : xs) (Left 1)
f y (Right a)
f y z

Andres Löh (U Bonn) Extensible datatypes DGP 2005 26 / 29

Implementing open functions – recursion

An open function is implicitly parametrized over the final closed
version of the function.

eval :: (eval) ⇒ Expr → Int

Intermediate code:

eval eval ′ (Const n) = n
eval eval ′ (Add x y) = eval ′ x + eval ′ y

Other functions that make use of open functions inherit these implicit
parameters.

f = . . . eval something . . .

f eval ′ = . . . eval ′ something . . .

Andres Löh (U Bonn) Extensible datatypes DGP 2005 27 / 29

Remaining problems

Is best-fit pattern matching sufficient for all cases? (Should be for the
given examples.)

First-class rules might be an alternative for best-fit pattern matching.

Like instance declarations, open functions are difficult to deal with in
conjunction with modules. Can cases be hidden (possibly by not
exporting certain changes)? Can cases be overwritten (possibly if a
clear order is recognisable)?

What about open datatypes and deriving/generic functions?

Can we define a transformation between type classes and extensible
datatypes?

Open datatypes and functions are closed once, for the whole program.
Would it be beneficial to allow to close them earlier, or multiple
times? (Related to subtyping.)

Andres Löh (U Bonn) Extensible datatypes DGP 2005 28 / 29

Remaining problems

Is best-fit pattern matching sufficient for all cases? (Should be for the
given examples.)

First-class rules might be an alternative for best-fit pattern matching.

Like instance declarations, open functions are difficult to deal with in
conjunction with modules. Can cases be hidden (possibly by not
exporting certain changes)? Can cases be overwritten (possibly if a
clear order is recognisable)?

What about open datatypes and deriving/generic functions?

Can we define a transformation between type classes and extensible
datatypes?

Open datatypes and functions are closed once, for the whole program.
Would it be beneficial to allow to close them earlier, or multiple
times? (Related to subtyping.)

Andres Löh (U Bonn) Extensible datatypes DGP 2005 28 / 29

Remaining problems

Is best-fit pattern matching sufficient for all cases? (Should be for the
given examples.)

First-class rules might be an alternative for best-fit pattern matching.

Like instance declarations, open functions are difficult to deal with in
conjunction with modules. Can cases be hidden (possibly by not
exporting certain changes)? Can cases be overwritten (possibly if a
clear order is recognisable)?

What about open datatypes and deriving/generic functions?

Can we define a transformation between type classes and extensible
datatypes?

Open datatypes and functions are closed once, for the whole program.
Would it be beneficial to allow to close them earlier, or multiple
times? (Related to subtyping.)

Andres Löh (U Bonn) Extensible datatypes DGP 2005 28 / 29

Remaining problems

Is best-fit pattern matching sufficient for all cases? (Should be for the
given examples.)

First-class rules might be an alternative for best-fit pattern matching.

Like instance declarations, open functions are difficult to deal with in
conjunction with modules. Can cases be hidden (possibly by not
exporting certain changes)? Can cases be overwritten (possibly if a
clear order is recognisable)?

What about open datatypes and deriving/generic functions?

Can we define a transformation between type classes and extensible
datatypes?

Open datatypes and functions are closed once, for the whole program.
Would it be beneficial to allow to close them earlier, or multiple
times? (Related to subtyping.)

Andres Löh (U Bonn) Extensible datatypes DGP 2005 28 / 29

Remaining problems

Is best-fit pattern matching sufficient for all cases? (Should be for the
given examples.)

First-class rules might be an alternative for best-fit pattern matching.

Like instance declarations, open functions are difficult to deal with in
conjunction with modules. Can cases be hidden (possibly by not
exporting certain changes)? Can cases be overwritten (possibly if a
clear order is recognisable)?

What about open datatypes and deriving/generic functions?

Can we define a transformation between type classes and extensible
datatypes?

Open datatypes and functions are closed once, for the whole program.
Would it be beneficial to allow to close them earlier, or multiple
times? (Related to subtyping.)

Andres Löh (U Bonn) Extensible datatypes DGP 2005 28 / 29

Related work

Type classes.

GADTs.

First-class patterns and rules.

Subtyping.

Extensible records.

Andres Löh (U Bonn) Extensible datatypes DGP 2005 29 / 29

	Motivation
	Lightweight generic programming
	Other applications of extensible datatypes

	Open datatypes and functions
	Open datatypes
	Open functions
	Open problems

	Related work

