
[Faculty of Science
Information and Computing Sciences]

Types, Universes and Everything

Andres Löh

Dept. of Information and Computing Sciences, Utrecht University
P.O. Box 80.089, 3508 TB Utrecht, The Netherlands

Web pages: http://www.cs.uu.nl/wiki/Center

May 26, 2010

http://www.cs.uu.nl/wiki/Center

[Faculty of Science
Information and Computing Sciences]

2

This talk

I The importance of strong type systems for programming.

I Current research topic: dependently typed programming.

[Faculty of Science
Information and Computing Sciences]

3

Example (C#)
stolen from Tim Sweeney’s POPL 2006 talk

Given a vertex array and an index array, let us read the indexed
vertices, transform them, and write the result into a new array.

Vertex[] Transform (Vertex[] Vertices, int[] Indices, Matrix m)
{

Vertex[] Result = new Vertex[Indices.length];
for (int i = 0; i < Indices.length; i++)

Result[i] = Transform (m, Vertices[Indices[i]]);
return Result;

}

can be null can be null can be null

can dereference null pointer

unnecessary bounds check
can be out of bounds

Can anything go wrong?

[Faculty of Science
Information and Computing Sciences]

3

Example (C#)
stolen from Tim Sweeney’s POPL 2006 talk

Given a vertex array and an index array, let us read the indexed
vertices, transform them, and write the result into a new array.

Vertex[] Transform (Vertex[] Vertices, int[] Indices, Matrix m)
{

Vertex[] Result = new Vertex[Indices.length];
for (int i = 0; i < Indices.length; i++)

Result[i] = Transform (m, Vertices[Indices[i]]);
return Result;

}

can be null can be null can be null

can dereference null pointer

unnecessary bounds check
can be out of bounds

Can anything go wrong?

[Faculty of Science
Information and Computing Sciences]

3

Example (C#)
stolen from Tim Sweeney’s POPL 2006 talk

Given a vertex array and an index array, let us read the indexed
vertices, transform them, and write the result into a new array.

Vertex[] Transform (Vertex[] Vertices, int[] Indices, Matrix m)
{

Vertex[] Result = new Vertex[Indices.length];
for (int i = 0; i < Indices.length; i++)

Result[i] = Transform (m, Vertices[Indices[i]]);
return Result;

}

can be null can be null can be null

can dereference null pointer

unnecessary bounds check
can be out of bounds

Can anything go wrong?

[Faculty of Science
Information and Computing Sciences]

3

Example (C#)
stolen from Tim Sweeney’s POPL 2006 talk

Given a vertex array and an index array, let us read the indexed
vertices, transform them, and write the result into a new array.

Vertex[] Transform (Vertex[] Vertices, int[] Indices, Matrix m)
{

Vertex[] Result = new Vertex[Indices.length];
for (int i = 0; i < Indices.length; i++)

Result[i] = Transform (m, Vertices[Indices[i]]);
return Result;

}

can be null can be null can be null

can dereference null pointer

unnecessary bounds check
can be out of bounds

Can anything go wrong?

[Faculty of Science
Information and Computing Sciences]

3

Example (C#)
stolen from Tim Sweeney’s POPL 2006 talk

Given a vertex array and an index array, let us read the indexed
vertices, transform them, and write the result into a new array.

Vertex[] Transform (Vertex[] Vertices, int[] Indices, Matrix m)
{

Vertex[] Result = new Vertex[Indices.length];
for (int i = 0; i < Indices.length; i++)

Result[i] = Transform (m, Vertices[Indices[i]]);
return Result;

}

can be null can be null can be null

can dereference null pointer

unnecessary bounds check
can be out of bounds

Can anything go wrong?

[Faculty of Science
Information and Computing Sciences]

3

Example (C#)
stolen from Tim Sweeney’s POPL 2006 talk

Given a vertex array and an index array, let us read the indexed
vertices, transform them, and write the result into a new array.

Vertex[] Transform (Vertex[] Vertices, int[] Indices, Matrix m)
{

Vertex[] Result = new Vertex[Indices.length];
for (int i = 0; i < Indices.length; i++)

Result[i] = Transform (m, Vertices[Indices[i]]);
return Result;

}

can be null can be null can be null

can dereference null pointer

unnecessary bounds check
can be out of bounds

Can anything go wrong?

[Faculty of Science
Information and Computing Sciences]

4

The problem

Types often cannot express the properties of programs
sufficiently well.

[Faculty of Science
Information and Computing Sciences]

5

Potential solutions

(Lots of) Testing

Assertions and Contracts

External verification

. . .

[Faculty of Science
Information and Computing Sciences]

5

Potential solutions

(Lots of) Testing

Assertions and Contracts

External verification

. . .

[Faculty of Science
Information and Computing Sciences]

5

Potential solutions

(Lots of) Testing

Assertions and Contracts

External verification

. . .

[Faculty of Science
Information and Computing Sciences]

5

Potential solutions

(Lots of) Testing

Assertions and Contracts

External verification

. . .

[Faculty of Science
Information and Computing Sciences]

6

The problem in the real world
The CWE/SANS Top 25 Most Dangerous Programming Errors

I Failure to Preserve Web Page Structure (“Cross-site Scripting”)

I Failure to Preserve SQL Query Structure (“SQL Injection”)

I Failure to Preserve OS Command Structure

I Buffer Copy without Checking Size of Input (“Buffer Overflow”)

I Improper Limitation of a Pathname to a Restricted Directory

I Improper Check for Unusual or Exceptional Conditions

I Improper Validation of Array Index

I Integer Overflow or Wraparound

I Missing Encryption of Sensitive Data

I . . .

[Faculty of Science
Information and Computing Sciences]

7

Better types?

Vertex[] Transform (Vertex[] Vertices, int[] Indices, Matrix m)
{

Vertex[] Result = new Vertex[Indices.length];
for (int i = 0; i < Indices.length; i++)

Result[i] = Transform (m, Vertices[Indices[i]]);
return Result;
}

[Faculty of Science
Information and Computing Sciences]

8

Better types!

Transform {n : Nat}
(Vertices : Vector Vertex n)
(Indices : Buffer (m : Nat where m < n))
(m : Matrix)

: Vector Vertex (Indices.length) =
[Transform (m, Vertices[i]) where i← Indices]

quantification over a natural number

types do not admit null values

vector has an explicit length

indices must be in range

length of result is known

result constructed using a vector comprehension

Note that we mix terms (here: natural numbers) with types.

[Faculty of Science
Information and Computing Sciences]

8

Better types!

Transform {n : Nat}
(Vertices : Vector Vertex n)
(Indices : Buffer (m : Nat where m < n))
(m : Matrix)

: Vector Vertex (Indices.length) =
[Transform (m, Vertices[i]) where i← Indices]

quantification over a natural number

types do not admit null values

vector has an explicit length

indices must be in range

length of result is known

result constructed using a vector comprehension

Note that we mix terms (here: natural numbers) with types.

[Faculty of Science
Information and Computing Sciences]

8

Better types!

Transform {n : Nat}
(Vertices : Vector Vertex n)
(Indices : Buffer (m : Nat where m < n))
(m : Matrix)

: Vector Vertex (Indices.length) =
[Transform (m, Vertices[i]) where i← Indices]

quantification over a natural number

types do not admit null values

vector has an explicit length

indices must be in range

length of result is known

result constructed using a vector comprehension

Note that we mix terms (here: natural numbers) with types.

[Faculty of Science
Information and Computing Sciences]

8

Better types!

Transform {n : Nat}
(Vertices : Vector Vertex n)
(Indices : Buffer (m : Nat where m < n))
(m : Matrix)

: Vector Vertex (Indices.length) =
[Transform (m, Vertices[i]) where i← Indices]

quantification over a natural number

types do not admit null values

vector has an explicit length

indices must be in range

length of result is known

result constructed using a vector comprehension

Note that we mix terms (here: natural numbers) with types.

[Faculty of Science
Information and Computing Sciences]

8

Better types!

Transform {n : Nat}
(Vertices : Vector Vertex n)
(Indices : Buffer (m : Nat where m < n))
(m : Matrix)

: Vector Vertex (Indices.length) =
[Transform (m, Vertices[i]) where i← Indices]

quantification over a natural number

types do not admit null values

vector has an explicit length

indices must be in range

length of result is known

result constructed using a vector comprehension

Note that we mix terms (here: natural numbers) with types.

[Faculty of Science
Information and Computing Sciences]

8

Better types!

Transform {n : Nat}
(Vertices : Vector Vertex n)
(Indices : Buffer (m : Nat where m < n))
(m : Matrix)

: Vector Vertex (Indices.length) =
[Transform (m, Vertices[i]) where i← Indices]

quantification over a natural number

types do not admit null values

vector has an explicit length

indices must be in range

length of result is known

result constructed using a vector comprehension

Note that we mix terms (here: natural numbers) with types.

[Faculty of Science
Information and Computing Sciences]

8

Better types!

Transform {n : Nat}
(Vertices : Vector Vertex n)
(Indices : Buffer (m : Nat where m < n))
(m : Matrix)

: Vector Vertex (Indices.length) =
[Transform (m, Vertices[i]) where i← Indices]

quantification over a natural number

types do not admit null values

vector has an explicit length

indices must be in range

length of result is known

result constructed using a vector comprehension

Note that we mix terms (here: natural numbers) with types.

[Faculty of Science
Information and Computing Sciences]

8

Better types!

Transform {n : Nat}
(Vertices : Vector Vertex n)
(Indices : Buffer (m : Nat where m < n))
(m : Matrix)

: Vector Vertex (Indices.length) =
[Transform (m, Vertices[i]) where i← Indices]

quantification over a natural number

types do not admit null values

vector has an explicit length

indices must be in range

length of result is known

result constructed using a vector comprehension

Note that we mix terms (here: natural numbers) with types.

[Faculty of Science
Information and Computing Sciences]

9

Dependent types

A→ B

(x : A) → B(x)
{x : A} → B(x)

(Indices : Buffer Nat)→ Vector Vertex (Indices.length)

[Faculty of Science
Information and Computing Sciences]

9

Dependent types

A→ B

(x : A) → B(x)
{x : A} → B(x)

(Indices : Buffer Nat)→ Vector Vertex (Indices.length)

[Faculty of Science
Information and Computing Sciences]

9

Dependent types

A→ B

(x : A) → B(x)
{x : A} → B(x)

(Indices : Buffer Nat)→ Vector Vertex (Indices.length)

[Faculty of Science
Information and Computing Sciences]

10

Type checking with dependent types

Type checker must perform evaluation.

Is Vector Vertex (2 + 2) the same as Vector Vertex 4?

Is Vector Vertex (n + 2) the same as Vector Vertex (2 + n)?

[Faculty of Science
Information and Computing Sciences]

10

Type checking with dependent types

Type checker must perform evaluation.

Is Vector Vertex (2 + 2) the same as Vector Vertex 4?

Is Vector Vertex (n + 2) the same as Vector Vertex (2 + n)?

[Faculty of Science
Information and Computing Sciences]

10

Type checking with dependent types

Type checker must perform evaluation.

Is Vector Vertex (2 + 2) the same as Vector Vertex 4?

Is Vector Vertex (n + 2) the same as Vector Vertex (2 + n)?

[Faculty of Science
Information and Computing Sciences]

11

The power of dependent types

We can add near-arbitrary properties and restrictions to our
types:

I Vectors of a certain length

I Numbers in a certain range

I Sorted lists; lists of even numbers; lists without duplicates

I Associative and commutative binary operators

I Properly escaped OS commands

I Well-formed SQL queries

I . . .

[Faculty of Science
Information and Computing Sciences]

11

The power of dependent types

We can add near-arbitrary properties and restrictions to our
types:

I Vectors of a certain length

I Numbers in a certain range

I Sorted lists; lists of even numbers; lists without duplicates

I Associative and commutative binary operators

I Properly escaped OS commands

I Well-formed SQL queries

I . . .

[Faculty of Science
Information and Computing Sciences]

11

The power of dependent types

We can add near-arbitrary properties and restrictions to our
types:

I Vectors of a certain length

I Numbers in a certain range

I Sorted lists; lists of even numbers; lists without duplicates

I Associative and commutative binary operators

I Properly escaped OS commands

I Well-formed SQL queries

I . . .

[Faculty of Science
Information and Computing Sciences]

11

The power of dependent types

We can add near-arbitrary properties and restrictions to our
types:

I Vectors of a certain length

I Numbers in a certain range

I Sorted lists; lists of even numbers; lists without duplicates

I Associative and commutative binary operators

I Properly escaped OS commands

I Well-formed SQL queries

I . . .

[Faculty of Science
Information and Computing Sciences]

11

The power of dependent types

We can add near-arbitrary properties and restrictions to our
types:

I Vectors of a certain length

I Numbers in a certain range

I Sorted lists; lists of even numbers; lists without duplicates

I Associative and commutative binary operators

I Properly escaped OS commands

I Well-formed SQL queries

I . . .

[Faculty of Science
Information and Computing Sciences]

12

Strong types are helpful

I We can make illegal configurations impossible to represent.

I We can preserve information we obtain from run-time
testing.

I With a suitable development environment, types can guide
the programming process.

[Faculty of Science
Information and Computing Sciences]

13

Curry-Howard correspondence
Programming is like reasoning in (intuitionistic) logic

property type
proof program

truth inhabited type
falsity uninhabited type
conjunction pair
disjunction union type
implication function
negation function to the uninhabited type
universal quantification dependent function
existential quantification dependent pair

[Faculty of Science
Information and Computing Sciences]

13

Curry-Howard correspondence
Programming is like reasoning in (intuitionistic) logic

property type
proof program

truth inhabited type
falsity uninhabited type
conjunction pair
disjunction union type
implication function
negation function to the uninhabited type
universal quantification dependent function
existential quantification dependent pair

[Faculty of Science
Information and Computing Sciences]

14

Universe constructions

A particular strength of dependently typed systems is that we
can compute types from values.

A type of codes together with an interpretation function
mapping codes to types is called a universe.

Because we can analyze the codes as normal values, we can
write functions that are extremely generic by using a universe.

[Faculty of Science
Information and Computing Sciences]

14

Universe constructions

A particular strength of dependently typed systems is that we
can compute types from values.

A type of codes together with an interpretation function
mapping codes to types is called a universe.

Because we can analyze the codes as normal values, we can
write functions that are extremely generic by using a universe.

[Faculty of Science
Information and Computing Sciences]

14

Universe constructions

A particular strength of dependently typed systems is that we
can compute types from values.

A type of codes together with an interpretation function
mapping codes to types is called a universe.

Because we can analyze the codes as normal values, we can
write functions that are extremely generic by using a universe.

[Faculty of Science
Information and Computing Sciences]

15

Simple universe example: C-style printf

Codes

Format strings such as "Test(%s): %d".

Interpretation function

Function that maps a format string to the type of the
corresponding printf function, such as (String, Int)→ String.

Using the universe

We can define printf as an ordinary function.

[Faculty of Science
Information and Computing Sciences]

16

Advanced universe example: databases

The “untyped” approach

Construct SQL queries as strings and send them to the
database.

The (E)DSL approach

Have a special language mechanism or library to construct
syntactically correct SQL queries.

The model-driven approach

Take the schema of a database and generate suitable datatypes
and interface code from it. Then use the generated code.

[Faculty of Science
Information and Computing Sciences]

17

The databases universe

Code

The database schemas.

Interpretation function

Takes schemas and computes suitable datatypes.

Using the universe

Together with an EDSL, we can write type-safe queries that are
guaranteed to adhere to the schema, and can adapt when the
schema changes.

[Faculty of Science
Information and Computing Sciences]

18

Does it work yet?

Dependently typed programming languages are currently in an
experimental stage:

I Good enough to write smaller programs.

I Lack of libraries.

I Not yet very optimized for performance.

I Quite a number of interesting and challenging problems
that we can solve.

I If you want to try a language: check out Agda.

I Haskell allows a limited encoding of dependent types.

