
[Faculty of Science
Information and Computing Sciences]

Terminating combinator parsers in Agda

Andres Löh

based on work by Nils Anders Danielsson and Ulf Norell

Department of Information and Computing Sciences
Utrecht University

June 12, 2008

[Faculty of Science
Information and Computing Sciences]

2

Overview

Totality

Parser combinators

Terminating combinator parsers

[Faculty of Science
Information and Computing Sciences]

3

Totality

[Faculty of Science
Information and Computing Sciences]

4

Total functions

A function is called total if it terminates and produces a valid
(non-⊥) result for any input.

Many Haskell functions are not total:

head :: [a] → a
head (x : xs) = x

Fails on the empty list.

factorial :: Int → Int
factorial 0 = 1
factorial n = n ∗ factorial (n− 1)

Loops on any negative input.

[Faculty of Science
Information and Computing Sciences]

4

Total functions

A function is called total if it terminates and produces a valid
(non-⊥) result for any input.

Many Haskell functions are not total:

head :: [a] → a
head (x : xs) = x

Fails on the empty list.

factorial :: Int → Int
factorial 0 = 1
factorial n = n ∗ factorial (n− 1)

Loops on any negative input.

[Faculty of Science
Information and Computing Sciences]

4

Total functions

A function is called total if it terminates and produces a valid
(non-⊥) result for any input.

Many Haskell functions are not total:

head :: [a] → a
head (x : xs) = x

Fails on the empty list.

factorial :: Int → Int
factorial 0 = 1
factorial n = n ∗ factorial (n− 1)

Loops on any negative input.

[Faculty of Science
Information and Computing Sciences]

4

Total functions

A function is called total if it terminates and produces a valid
(non-⊥) result for any input.

Many Haskell functions are not total:

head :: [a] → a
head (x : xs) = x

Fails on the empty list.

factorial :: Int → Int
factorial 0 = 1
factorial n = n ∗ factorial (n− 1)

Loops on any negative input.

[Faculty of Science
Information and Computing Sciences]

5

Agda is (in spirit) a total language

I All Agda functions are supposed to be total.

I Writing a function that the compiler cannot easily see to
be terminating results in a compiler error.

I Other dependently typed systems (Epigram, Coq) are
similar in this respect.

Why?

[Faculty of Science
Information and Computing Sciences]

5

Agda is (in spirit) a total language

I All Agda functions are supposed to be total.

I Writing a function that the compiler cannot easily see to
be terminating results in a compiler error.

I Other dependently typed systems (Epigram, Coq) are
similar in this respect.

Why?

[Faculty of Science
Information and Computing Sciences]

5

Agda is (in spirit) a total language

I All Agda functions are supposed to be total.

I Writing a function that the compiler cannot easily see to
be terminating results in a compiler warning.

I Other dependently typed systems (Epigram, Coq) are
similar in this respect.

Why?

[Faculty of Science
Information and Computing Sciences]

5

Agda is (in spirit) a total language

I All Agda functions are supposed to be total.

I Writing a function that the compiler cannot easily see to
be terminating results in a compiler warning.

I Other dependently typed systems (Epigram, Coq) are
similar in this respect.

Why?

[Faculty of Science
Information and Computing Sciences]

5

Agda is (in spirit) a total language

I All Agda functions are supposed to be total.

I Writing a function that the compiler cannot easily see to
be terminating results in a compiler warning.

I Other dependently typed systems (Epigram, Coq) are
similar in this respect.

Why?

[Faculty of Science
Information and Computing Sciences]

6

Reasons for totality

I In Haskell, every type is inhabited: ⊥ is a value of any
type.

I In dependently typed languages, we want to use the
Curry-Howard correspondence: types are propositions,
values are proofs.

data 6 : N → N → Set where
6 base : ∀{n} → n 6 n
6 step : ∀{m n} → m 6 n → m 6 suc n

trans : ∀{ l m n} → l 6 m → m 6 n → l 6 n
replaceInits : ∀{a m n} → m 6 n →

Vec a m → Vec a n → Vec a n

I Haskell is inconsistent: all propositions can be proved.

[Faculty of Science
Information and Computing Sciences]

6

Reasons for totality

I In Haskell, every type is inhabited: ⊥ is a value of any
type.

I In dependently typed languages, we want to use the
Curry-Howard correspondence: types are propositions,
values are proofs.

data 6 : N → N → Set where
6 base : ∀{n} → n 6 n
6 step : ∀{m n} → m 6 n → m 6 suc n

trans : ∀{ l m n} → l 6 m → m 6 n → l 6 n
replaceInits : ∀{a m n} → m 6 n →

Vec a m → Vec a n → Vec a n

I Haskell is inconsistent: all propositions can be proved.

[Faculty of Science
Information and Computing Sciences]

6

Reasons for totality

I In Haskell, every type is inhabited: ⊥ is a value of any
type.

I In dependently typed languages, we want to use the
Curry-Howard correspondence: types are propositions,
values are proofs.

data 6 : N → N → Set where
6 base : ∀{n} → n 6 n
6 step : ∀{m n} → m 6 n → m 6 suc n

trans : ∀{ l m n} → l 6 m → m 6 n → l 6 n
replaceInits : ∀{a m n} → m 6 n →

Vec a m → Vec a n → Vec a n

I Haskell is inconsistent: all propositions can be proved.

[Faculty of Science
Information and Computing Sciences]

7

Reasons for totality – contd.

I Types can contain terms:

Vec : Set → N → Set

++ : ∀{a m n} → Vec a m → Vec a n → Vec a (m + n)
tail : ∀{a n} → Vec a (suc n) → Vec a n

I Consider:

tail (v1 ++ v2)

I Typechecking the expression requires unification:

(length v1 + length v2)∼ suc n

(for any n).

[Faculty of Science
Information and Computing Sciences]

7

Reasons for totality – contd.

I Types can contain terms:

Vec : Set → N → Set

++ : ∀{a m n} → Vec a m → Vec a n → Vec a (m + n)
tail : ∀{a n} → Vec a (suc n) → Vec a n

I Consider:

tail (v1 ++ v2)

I Typechecking the expression requires unification:

(length v1 + length v2)∼ suc n

(for any n).

[Faculty of Science
Information and Computing Sciences]

7

Reasons for totality – contd.

I Types can contain terms:

Vec : Set → N → Set

++ : ∀{a m n} → Vec a m → Vec a n → Vec a (m + n)
tail : ∀{a n} → Vec a (suc n) → Vec a n

I Consider:

tail (v1 ++ v2)

I Typechecking the expression requires unification:

(length v1 + length v2)∼ suc n

(for any n).

[Faculty of Science
Information and Computing Sciences]

8

Consequences of totality

I Inductively defined datatypes have only finite values.

I Evaluation strategy (eager vs. lazy) is semantically
irrelevant.

I The language cannot be Turing-complete (but still
surprisingly expressive).

[Faculty of Science
Information and Computing Sciences]

9

How to ensure totality

I Agda has a built-in coverage and termination checker.

I The coverage checker ensures that in a case analysis, all
possible patterns are covered.

I The termination checker essentially checks that functions
are structurally recursive.

[Faculty of Science
Information and Computing Sciences]

10

Structural recursion

I Each value essentially is a constructor applied to other
values:

v = C v1 . . . vn

I All such subvalues (and their subvalues . . .) are
structurally smaller. Recursive calls must make at least
one argument structurally smaller.

I Many functions are trivially structurally recursive:

length : ∀{a} → [a] → N
length [] = 0
length (x :: xs) = 1 + length xs

Others (e.g. Quicksort) require some work . . .

[Faculty of Science
Information and Computing Sciences]

10

Structural recursion

I Each value essentially is a constructor applied to other
values:

v = C v1 . . . vn

I All such subvalues (and their subvalues . . .) are
structurally smaller. Recursive calls must make at least
one argument structurally smaller.

I Many functions are trivially structurally recursive:

length : ∀{a} → [a] → N
length [] = 0
length (x :: xs) = 1 + length xs

Others (e.g. Quicksort) require some work . . .

[Faculty of Science
Information and Computing Sciences]

11

Parser combinators

[Faculty of Science
Information and Computing Sciences]

12

Simple parsers

We can do better, but for this talk, we choose a näive
implementation (list of successes):

Input : Set
Input = [Char]
Parser : Set → Set
Parser r = Input → [r × Input]

[Faculty of Science
Information and Computing Sciences]

13

Applicative interface

fail : ∀{r} → Parser r
fail inp = []

succeed : ∀{r} → r → Parser r
succeed x inp = (x, inp) :: []

p : ∀{r} → Parser r → Parser r → Parser r
(p p q) inp = p inp ++ q inp

? : ∀{r s} → Parser (r → s) → Parser r → Parser s
(p ? q) inp =

concat (map (λf → map (λg → ((π1 f) (π1 g), π2 g))
(q (π2 f)))

(p inp))

[Faculty of Science
Information and Computing Sciences]

13

Applicative interface

fail : ∀{r} → Parser r
fail inp = []

succeed : ∀{r} → r → Parser r
succeed x inp = (x, inp) :: []

p : ∀{r} → Parser r → Parser r → Parser r
(p p q) inp = p inp ++ q inp

? : ∀{r s} → Parser (r → s) → Parser r → Parser s
(p ? q) inp =

concat (map (λf → map (λg → ((π1 f) (π1 g), π2 g))
(q (π2 f)))

(p inp))

[Faculty of Science
Information and Computing Sciences]

13

Applicative interface

fail : ∀{r} → Parser r
fail inp = []

succeed : ∀{r} → r → Parser r
succeed x inp = (x, inp) :: []

p : ∀{r} → Parser r → Parser r → Parser r
(p p q) inp = p inp ++ q inp

? : ∀{r s} → Parser (r → s) → Parser r → Parser s
(p ? q) inp =

concat (map (λf → map (λg → ((π1 f) (π1 g), π2 g))
(q (π2 f)))

(p inp))

[Faculty of Science
Information and Computing Sciences]

14

Applicative interface – contd.

symbol : Char → Parser Char
symbol [] = []
symbol x (i :: inp) = if i = = x then [x, inp] else []

$: ∀{r s} → (r → s) → Parser r → Parser s
f $ p = succeed f ? p

I The combinators are not recursive and thus accepted as
total functions by Agda.

I However, nearly all interesting grammars are cyclic, and
the resulting combinator parsers recursive:

sum : Parser N
sum = (λm n → m + n) $ nat ? symbol ’+’ ? sum

p nat

[Faculty of Science
Information and Computing Sciences]

14

Applicative interface – contd.

symbol : Char → Parser Char
symbol [] = []
symbol x (i :: inp) = if i = = x then [x, inp] else []

$: ∀{r s} → (r → s) → Parser r → Parser s
f $ p = succeed f ? p

I The combinators are not recursive and thus accepted as
total functions by Agda.

I However, nearly all interesting grammars are cyclic, and
the resulting combinator parsers recursive:

sum : Parser N
sum = (λm n → m + n) $ nat ? symbol ’+’ ? sum

p nat

[Faculty of Science
Information and Computing Sciences]

14

Applicative interface – contd.

symbol : Char → Parser Char
symbol [] = []
symbol x (i :: inp) = if i = = x then [x, inp] else []

$: ∀{r s} → (r → s) → Parser r → Parser s
f $ p = succeed f ? p

I The combinators are not recursive and thus accepted as
total functions by Agda.

I However, nearly all interesting grammars are cyclic, and
the resulting combinator parsers recursive:

sum : Parser N
sum = (λm n → m + n) $ nat ? symbol ’+’ ? sum

p nat

[Faculty of Science
Information and Computing Sciences]

15

Not all parsers terminate

nat : Parser N
nat = (λn d → n ∗ 10 + d) $ nat ? digit

p digit

many : ∀{a} → Parser a → Parser [a]
many p = :: $ p ? many p

p succeed []
optx : Parser Char
optx = symbol ’x’ p succeed ’ ’

optxs : Parser [Char]
optxs = many optx

[Faculty of Science
Information and Computing Sciences]

15

Not all parsers terminate

nat : Parser N
nat = (λn d → n ∗ 10 + d) $ nat ? digit

p digit

many : ∀{a} → Parser a → Parser [a]
many p = :: $ p ? many p

p succeed []
optx : Parser Char
optx = symbol ’x’ p succeed ’ ’

optxs : Parser [Char]
optxs = many optx

[Faculty of Science
Information and Computing Sciences]

16

The rest of this talk

I We will design parser combinators so that the resulting
parsers are structurally recursive.

I Left-recursive grammars (directly and indirectly) will be
type-incorrect in this library.

[Faculty of Science
Information and Computing Sciences]

17

Terminating combinator parsers

[Faculty of Science
Information and Computing Sciences]

18

The main idea

I Look at the following graph: nodes are parsers, an edge
from one node to another indicates that a parser can
directly call another (without first consuming a symbol).

I For left-recursive grammars (directly or indirectly), the
graph contains cycles.

I For other grammars, the graph is cycle-free, and can be
expanded into a finite tree.

I If we make this tree an index of the parser type, then
left-recursive parsers are no longer type-correct.

[Faculty of Science
Information and Computing Sciences]

19

Dependency tree

data Corners : Set where
leaf : Corners
node1 : Corners → Corners
node2 : Corners → Corners → Corners

Parser : Corners → Set → Set

symbol : Char → Parser leaf Char
succeed : ∀{r} → r → Parser leaf r

p : ∀{r} → Parser c1 r → Parser c2 r →
Parser (node2 c1 c2) r

? : ∀{r s} → Parser c1 (r → s) → Parser c2 r →
Parser ? s

[Faculty of Science
Information and Computing Sciences]

19

Dependency tree

data Corners : Set where
leaf : Corners
node1 : Corners → Corners
node2 : Corners → Corners → Corners

Parser : Corners → Set → Set

symbol : Char → Parser leaf Char
succeed : ∀{r} → r → Parser leaf r

p : ∀{r} → Parser c1 r → Parser c2 r →
Parser (node2 c1 c2) r

? : ∀{r s} → Parser c1 (r → s) → Parser c2 r →
Parser ? s

[Faculty of Science
Information and Computing Sciences]

20

Epsilon

It is important to know if a parser accepts the empty word:

Empty : Set
Empty = Bool

Parser : (Empty × Corners) → Set → Set

symbol : Char → Parser (false, leaf) Char
succeed : ∀{r} → r → Parser (true, leaf) r

p : ∀{e1 c1 e2 c2 r} →
Parser (e1, c1) r → Parser (e1, c2) r →
Parser (e1 ∨ e2, node2 c1 c2) r

? : ∀{e1 c1 e2 c2 r s} →
Parser (e1, c1) (r → s) → Parser (e1, c2) r →
Parser (e1 ∧ e2, if e1 then node2 c1 c2 else c1) s

[Faculty of Science
Information and Computing Sciences]

20

Epsilon

It is important to know if a parser accepts the empty word:

Empty : Set
Empty = Bool

Parser : (Empty × Corners) → Set → Set

symbol : Char → Parser (false, leaf) Char

succeed : ∀{r} → r → Parser (true, leaf) r
p : ∀{e1 c1 e2 c2 r} →

Parser (e1, c1) r → Parser (e1, c2) r →
Parser (e1 ∨ e2, node2 c1 c2) r

? : ∀{e1 c1 e2 c2 r s} →
Parser (e1, c1) (r → s) → Parser (e1, c2) r →
Parser (e1 ∧ e2, if e1 then node2 c1 c2 else c1) s

[Faculty of Science
Information and Computing Sciences]

20

Epsilon

It is important to know if a parser accepts the empty word:

Empty : Set
Empty = Bool

Parser : (Empty × Corners) → Set → Set

symbol : Char → Parser (false, leaf) Char
succeed : ∀{r} → r → Parser (true, leaf) r

p : ∀{e1 c1 e2 c2 r} →
Parser (e1, c1) r → Parser (e1, c2) r →
Parser (e1 ∨ e2, node2 c1 c2) r

? : ∀{e1 c1 e2 c2 r s} →
Parser (e1, c1) (r → s) → Parser (e1, c2) r →
Parser (e1 ∧ e2, if e1 then node2 c1 c2 else c1) s

[Faculty of Science
Information and Computing Sciences]

20

Epsilon

It is important to know if a parser accepts the empty word:

Empty : Set
Empty = Bool

Parser : (Empty × Corners) → Set → Set

symbol : Char → Parser (false, leaf) Char
succeed : ∀{r} → r → Parser (true, leaf) r

p : ∀{e1 c1 e2 c2 r} →
Parser (e1, c1) r → Parser (e1, c2) r →
Parser (e1 ∨ e2, node2 c1 c2) r

? : ∀{e1 c1 e2 c2 r s} →
Parser (e1, c1) (r → s) → Parser (e1, c2) r →
Parser (e1 ∧ e2, if e1 then node2 c1 c2 else c1) s

[Faculty of Science
Information and Computing Sciences]

20

Epsilon

It is important to know if a parser accepts the empty word:

Empty : Set
Empty = Bool

Parser : (Empty × Corners) → Set → Set

symbol : Char → Parser (false, leaf) Char
succeed : ∀{r} → r → Parser (true, leaf) r

p : ∀{e1 c1 e2 c2 r} →
Parser (e1, c1) r → Parser (e1, c2) r →
Parser (e1 ∨ e2, node2 c1 c2) r

? : ∀{e1 c1 e2 c2 r s} →
Parser (e1, c1) (r → s) → Parser (e1, c2) r →
Parser (e1 ∧ e2, if e1 then node2 c1 c2 else c1) s

[Faculty of Science
Information and Computing Sciences]

21

Not done

I What about

Parser : (Empty × Corners) → Set → Set

If, as before

Parser r = Input → [r × Input]

then the index information is lost!

I We have to turn Parser into an abstract datatype:

data Parser : (Empty × Corners) → Set → Set where
. . .

[Faculty of Science
Information and Computing Sciences]

21

Not done

I What about

Parser : (Empty × Corners) → Set → Set

If, as before

Parser r = Input → [r × Input]

then the index information is lost!

I We have to turn Parser into an abstract datatype:

data Parser : (Empty × Corners) → Set → Set where
. . .

[Faculty of Science
Information and Computing Sciences]

22

Not done – contd.

I Recursive definitions still pose a problem.

I Does not pass the termination checker, but still
type-correct:

p : Parser (true, leaf) Char
p = p

I Recursion must change the Corners tree!

! : ∀{e c r} →
Parser (e, c) r → Parser (e, node1 c) r

Recursion via ! fails the “occurs check”:

p = !p

[Faculty of Science
Information and Computing Sciences]

22

Not done – contd.

I Recursive definitions still pose a problem.

I Does not pass the termination checker, but still
type-correct:

p : Parser (true, leaf) Char
p = p

I Recursion must change the Corners tree!

! : ∀{e c r} →
Parser (e, c) r → Parser (e, node1 c) r

Recursion via ! fails the “occurs check”:

p = !p

[Faculty of Science
Information and Computing Sciences]

23

Not done – contd.

I Legal cyclic definitions are still far from structurally
recursive:

p : Parser . . .
p = . . . p . . .

I Turn parsers (thus Corners) into function arguments.

I This unfortunately has quite a few implications: we turn
parser combinators and also the nonterminals of grammars
into datatypes, so that we can perform case analysis in a
function.

[Faculty of Science
Information and Computing Sciences]

24

Abstract parsers

ParserType = (Empty × Corners) → Set → Set1

data Parser (nt : ParserType) : ParserType where
! : ∀{e c r} →

nt (e, c) r → Parser nt (e, node1 c) r
symbol : Char → Parser nt (false, leaf) Char
return : ∀{r} → r → Parser nt (true, leaf) r
. . .

[Faculty of Science
Information and Computing Sciences]

25

Grammars

Grammar : ParserType → Set1
Grammar nt = ∀{e c r} → nt (e, c) r → Parser nt (e, c) r

data NT : ParserType where
nat : NT (,) N -- indices can be inferred!
sum : NT (,) N

grammar : Grammar NT
grammar nat = (const 1) $ sym ’1’ -- simplified
grammar sum = (λm n → m + n) $!nat ? symbol ’+’ ? !sum

p ! nat

The definition of grammar is type correct if no left-recursion is
involved. It is no longer recursive.

[Faculty of Science
Information and Computing Sciences]

25

Grammars

Grammar : ParserType → Set1
Grammar nt = ∀{e c r} → nt (e, c) r → Parser nt (e, c) r

data NT : ParserType where
nat : NT (,) N -- indices can be inferred!
sum : NT (,) N

grammar : Grammar NT
grammar nat = (const 1) $ sym ’1’ -- simplified
grammar sum = (λm n → m + n) $!nat ? symbol ’+’ ? !sum

p ! nat

The definition of grammar is type correct if no left-recursion is
involved. It is no longer recursive.

[Faculty of Science
Information and Computing Sciences]

26

Interpreting the parsers

parse : {nt : ParserType}(g : Grammar nt)
{e : Empty}{c : Corners}{r : Set} →
Parser nt (e, c) r →
LoS.Parser r -- original parser type

parse g (!p) = parse g (g p)
parse g (symbol c) = LoS.symbol c
parse g (p1 p p2) = LoS. p (parse g p1) (parse g p2)
parse g (p1 ? p2) = LoS. ? (parse g p1) (parse g p2)

Is this definition structurally recursive?

No, in the ! case, the structure of the parser can get larger; in
the ? case, p2 can have a large Corners tree.

[Faculty of Science
Information and Computing Sciences]

26

Interpreting the parsers

parse : {nt : ParserType}(g : Grammar nt)
{e : Empty}{c : Corners}{r : Set} →
Parser nt (e, c) r →
LoS.Parser r -- original parser type

parse g (!p) = parse g (g p)
parse g (symbol c) = LoS.symbol c
parse g (p1 p p2) = LoS. p (parse g p1) (parse g p2)
parse g (p1 ? p2) = LoS. ? (parse g p1) (parse g p2)

Is this definition structurally recursive?

No, in the ! case, the structure of the parser can get larger; in
the ? case, p2 can have a large Corners tree.

[Faculty of Science
Information and Computing Sciences]

26

Interpreting the parsers

parse : {nt : ParserType}(g : Grammar nt)
{e : Empty}{c : Corners}{r : Set} →
Parser nt (e, c) r →
LoS.Parser r -- original parser type

parse g (!p) = parse g (g p)
parse g (symbol c) = LoS.symbol c
parse g (p1 p p2) = LoS. p (parse g p1) (parse g p2)
parse g (p1 ? p2) = LoS. ? (parse g p1) (parse g p2)

Is this definition structurally recursive?

No, in the ! case, the structure of the parser can get larger; in
the ? case, p2 can have a large Corners tree.

[Faculty of Science
Information and Computing Sciences]

26

Interpreting the parsers

parse : {nt : ParserType}(g : Grammar nt)
{e : Empty}{c : Corners}{r : Set} →
Parser nt (e, c) r →
LoS.Parser r -- original parser type

parse g (!p) = parse g (g p)
parse g (symbol c) = LoS.symbol c
parse g (p1 p p2) = LoS. p (parse g p1) (parse g p2)
parse g (p1 ? p2) = LoS. ? (parse g p1) (parse g p2)

Is this definition structurally recursive?

No, in the ! case, the structure of the parser can get larger; in
the ? case, p2 can have a large Corners tree.

[Faculty of Science
Information and Computing Sciences]

27

A final refinement

We refine the Input type to keep an upper bound of the length
of the input string:

Input : N → Set
Input n = BoundedVec Char n

Parser : N → N → Set → Set
Parser m n r = Input m → [r × Input n]

[Faculty of Science
Information and Computing Sciences]

28

Adapting parse

parse : {nt : ParserType}(g : Grammar nt)
(n : N){e : Empty}{c : Corners}{r : Set} →
Parser nt (e, c) r →
LoS.Parser n (if e then n else pred n) r

. . .

parse g n (? {e1 = true} p1 p2)
= LoS. ? (parse g n p1) (parse g n p2)

-- ok because p1 and p2 have a smaller Corners tree
parse g 0 (? {e1 = false}p1 p2)

= LoS.fail
parse g (suc n) (? {e1 = false}p1 p2)

= LoS. ? (parse g (suc n) p1) (parse↑ g n p2)
parse↑ : · · · → -- like parse, but results in . . .

LoS.Parser n n r

[Faculty of Science
Information and Computing Sciences]

28

Adapting parse

parse : {nt : ParserType}(g : Grammar nt)
(n : N){e : Empty}{c : Corners}{r : Set} →
Parser nt (e, c) r →
LoS.Parser n (if e then n else pred n) r

. . .
parse g n (? {e1 = true} p1 p2)

= LoS. ? (parse g n p1) (parse g n p2)
-- ok because p1 and p2 have a smaller Corners tree

parse g 0 (? {e1 = false}p1 p2)
= LoS.fail

parse g (suc n) (? {e1 = false}p1 p2)
= LoS. ? (parse g (suc n) p1) (parse↑ g n p2)

parse↑ : · · · → -- like parse, but results in . . .
LoS.Parser n n r

[Faculty of Science
Information and Computing Sciences]

28

Adapting parse

parse : {nt : ParserType}(g : Grammar nt)
(n : N){e : Empty}{c : Corners}{r : Set} →
Parser nt (e, c) r →
LoS.Parser n (if e then n else pred n) r

. . .
parse g n (? {e1 = true} p1 p2)

= LoS. ? (parse g n p1) (parse g n p2)
-- ok because p1 and p2 have a smaller Corners tree

parse g 0 (? {e1 = false}p1 p2)
= LoS.fail

parse g (suc n) (? {e1 = false}p1 p2)
= LoS. ? (parse g (suc n) p1) (parse↑ g n p2)

parse↑ : · · · → -- like parse, but results in . . .
LoS.Parser n n r

[Faculty of Science
Information and Computing Sciences]

28

Adapting parse

parse : {nt : ParserType}(g : Grammar nt)
(n : N){e : Empty}{c : Corners}{r : Set} →
Parser nt (e, c) r →
LoS.Parser n (if e then n else pred n) r

. . .
parse g n (? {e1 = true} p1 p2)

= LoS. ? (parse g n p1) (parse g n p2)
-- ok because p1 and p2 have a smaller Corners tree

parse g 0 (? {e1 = false}p1 p2)
= LoS.fail

parse g (suc n) (? {e1 = false}p1 p2)
= LoS. ? (parse g (suc n) p1) (parse↑ g n p2)

parse↑ : · · · → -- like parse, but results in . . .
LoS.Parser n n r

[Faculty of Science
Information and Computing Sciences]

29

Summary

I We have shown that structurally recursive parser
combinators can be implemented in Agda.

I Parsers written using this library are total. Left-recursive
grammars (whether directly or indirectly) are rejected at
compilation time.

I More work for the implementor, not much more work for
the user, except . . .

I Defining reusable recursive derived combinators
(e.g. many) requires a bit of additional trickery.

I The indices (Empty and Corners) can usually be inferred.

I Efficiency in current implementations is not too good, but
in principle, not much overhead is involved – most of the
indices are irrelevant at run time and can be eliminated.

[Faculty of Science
Information and Computing Sciences]

30

Advertisement

Interested in Agda?

Try the seminar on

“Dependently Typed Programming”
(INFOMDTP)

in block 1 of 2008/2009.

	Totality
	Parser combinators
	Terminating combinator parsers

