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About me

I PhD (Utrecht University) 2004 on “Generic Haskell”
I Lecturer at Utrecht University 2007–2010
I Partner at Well-Typed 2010–

.

.Well-Typed



About Well-Typed

I Founded 1998.
I Haskell consulting (development, advice, support, training).
I Currently ∼7 people working full-time in various places.
I Clients mainly in Europe and USA (most work done

remotely).
I Also helped to set up the Industrial Haskell Group.
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Parallelism and Concurrency



Parallelism and Concurrency

Parallelism

Running (parts of) programs in parallel on multiple cores (or
nodes), in order to speed up the program.

Concurrency

Language constructs that support structuring a program as if it
has many independent threads of control.
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Concurrency for Parallelism?

Using concurrency to implement parallelism is quite common,
but not necessarily a good idea:

I reasoning about threads is difficult,
I communication between threads,
I exceptions,
I potential deadlocks and race conditions.

Often, code we want to parallelise is pure – it involves no side
effects at all. So why introduce them just for parallelism?
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Automatic parallelism?

In Haskell, function application is free of side effects, and
evaluation is non-strict:

f x

In principle, we can run f in parallel with x :

I f might not need x at all, but no harm is done,
I f might need x immediately, then no harm is done,
I f might not need x immediately, then time is saved!

(The final case looks particularly attractive if x produces a
data structure lazily that is consumed by f .)
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However . . .

The enemies of parallelism:

I there is overhead in running things in parallel,
I garbage collection is difficult to parallelize,
I non-strictness can not only be helpful, but also tricky:

I we might run too many things we don’t need,
I it’s unclear how far to evaluate speculatively,
I we have to make clear how it interacts with GC.

Conclusion

Fully automatic parallelism is still a future goal. For now, we
need to help the compiler.

.

.Well-Typed



However . . .

The enemies of parallelism:

I there is overhead in running things in parallel,
I garbage collection is difficult to parallelize,
I non-strictness can not only be helpful, but also tricky:

I we might run too many things we don’t need,
I it’s unclear how far to evaluate speculatively,
I we have to make clear how it interacts with GC.

Conclusion

Fully automatic parallelism is still a future goal. For now, we
need to help the compiler.

.

.Well-Typed



Deterministic parallelism

We call a parallel algorithm deterministic if its result is
independent of the number of cores it is being run on, and the
individual run of the program (scheduling decisions etc.).

Deterministic parallelism is quite unique to Haskell (due to its
relative purity), but it removes a significant source of errors and
is an extremely cool feature.

Haskell supports multiple approaches to deterministic
parallelism.
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The Haskell landscape

A few deterministic approaches:

I nested data parallelism (Data-Parallel Haskell, dph),
I flat data parallelism (repa),
I evaluation strategies (parallel),
I safe dataflow specification (monad-par).

A few non-deterministic approaches:

I concurrency primitives ( forkIO , . . . ),
I dataflow with side effects (monad-par),
I asynchronous computations (async),
I Cloud Haskell (distributed-process).
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Why so many approaches?

I Parallelism is “hot”.
I Parallelising programs (even explicitly) is not trivial.

I Different forms of parallelism have different demands:
I data parallelism is about doing the same operations for

many pieces of data; a particular common form that
warrants dedicated support (dph, repa)

I task or control parallelism is about dividing the overall work
into many parts – these approaches can be used for data
parallelism, too (parallel, monad-par).
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Today

Given the lack of time, we have to limit ourselves, and will focus
on the Par monad.
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A first example



Example

collatz :: Integer→ Integer
collatz n
| even n = n ‘div‘ 2
| odd n = 3 ∗ n + 1

collatzSeq :: Integer→ [Integer]
collatzSeq = takeWhile (>1) . iterate collatz
collatzSteps :: [ Int]
collatzSteps = map (length . collatzSeq) [1 . .]

GHCi> collatzSeq 9
[9, 28, 14, 7, 22, 11, 34, 17, 52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2]
GHCi> take 10 collatzSteps
[0, 1, 7, 2, 5, 8, 16, 3, 19, 6]

Let’s find the maximum number of steps in a given range.
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Parallelisation

collatzMax :: Integer→ Integer→ Int
collatzMax lo hi = maximum (map (length . collatzSeq) [ lo . . hi])

Binary division:

parCollatzMax :: Integer→ Integer→ Int
parCollatzMax lo hi = runPar $

do
r1← spawnP (collatzMax lo mi)
r2← spawnP (collatzMax (mi + 1) hi)
m1← get r1
m2← get r2
return (max m1 m2)

where
mi = (lo + hi) ‘div‘ 2
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Compilation and running

Compile with:

$ ghc -O2 -threaded -rtsopts Collatz

Run with:

$ ./Collatz +RTS -N -s

Compared with a plain implementation provides modest
speedup.

.
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Flag explanation

Compiler flags:

I -O2 enables optimisation
I -threaded links in the threaded run-time system
I -rtsopts allows configuration of run-time system at run

time
I -eventlog allows eventlog generation for debugging

Run-time system flags:

I -N runs on all available cores
I -s produces run-time statistics
I -l generates an eventlog for debugging
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Haskell and Effects



Effects

Java/C-like

int add0 (int x, int y) {
return x + y;
}

int add1 (int x, int y) {
launch_missiles (now);
return x + y;
}

Both functions have the same type!
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Effects

Haskell

add0 :: Int→ Int→ Int
add0 x y = x + y
add1 :: Int→ Int→ IO Int
add1 x y = do

launch_missiles
return (x + y)

Effectful computations are tagged by the type system!

.
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Effects in Haskell’s types

We have rather fine-grained control about effects just by looking
at the types:

A some type, no effect
IO A IO, exceptions, random numbers, concurrency, . . .
Gen A random numbers only
ST s A mutable variables only
STM A software transactional memory log variables only
State s A (persistent) state only
Error A exceptions only
Signal A time-changing value

I All effect types share a common interface (monad; allows
sequencing of operations and do notation).

I New effect types can be defined. Effects can be combined.
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More on do notation

interaction :: IO String
interaction = do

putStrLn "Who are you?"
name← getLine
putStrLn ("Hello, "++ name ++ "!")
return name

Look at the types:

putStrLn :: String→ IO ()
getLine :: IO String
return :: a→ IO a

(>>=) :: IO a→ (a→ IO b)→ IO b
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No escape from IO

There’s no function of type:

IO a→ a

Example:

I An Int is a constant integer.
I An IO Int is an IO action yielding an integer.
I We shouldn’t be able to forget about the potential side

effects.

unsafePerformIO :: IO a→ a

.

.Well-Typed



No escape from IO

There’s no function of type:

IO a→ a

Example:

I An Int is a constant integer.
I An IO Int is an IO action yielding an integer.
I We shouldn’t be able to forget about the potential side

effects.

unsafePerformIO :: IO a→ a

.

.Well-Typed



The Par monad

I very limited interface
I carefully designed to guarantee deterministic results

runPar :: Par a→ a

I create an annotated parallel computation of type Par a
I run it with runPar
I obtain a deterministic result of type a
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Writing parallel programs



Back to our example

parCollatzMax :: Integer→ Integer→ Int
parCollatzMax lo hi = runPar $

do
r1← spawnP (collatzMax lo mi)
r2← spawnP (collatzMax (mi + 1) hi)
m1← get r1
m2← get r2
return (max m1 m2)

where
mi = (lo + hi) ‘div‘ 2
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The idea of monad-par

A more recent approach to deterministic parallel programming:

I an interface with explicit forking of subcomputations,
I communication via write-once variables ensured

deterministic results,
I reading a variable blocks until the result is available.

.

.Well-Typed



Interface

From Control.Monad.Par :

data Par a -- abstract
instance Monad Par
data IVar a -- abstract
spawn :: NFData a⇒ Par a→ Par (IVar a)
spawnP :: NFData a⇒ a→ Par (IVar a)
get :: IVar a→ Par a
runPar :: Par a→ a

Let’s ignore NFData for a moment.
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More functions

new :: Par (IVar a)
put :: NFData a⇒ IVar a→ a→ Par ()
get :: IVar a→ Par a
fork :: Par ()→ Par ()

I The functions spawn and spawnP can be implemented
in terms of the functions above.

I Writing twice to an IVar is an error.

.

.Well-Typed



Why NFData ?

Haskell is, by default, not strict:

I data is stored in unevaluated form unless demanded;
I storing data in a variable does not normally force it.

Here, we want to make sure that the result is fully computed
before it is communicated to the consuming computation:

I the NFData type class contains functions for fully
evaluating terms of a given type;

I it is used in spawn and put to make sure that results are
fully evaluated before they’re written to a write-once
variable.
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Static vs. dynamic partitioning

Static partitioning is bad:

I fixed number of tasks, limited speedup on many cores;
I difficult to balance the load;
I difficult to control granularity.

Let’s create parallel tasks depending on the problem size.

.
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Parallel map

parMap :: NFData b⇒ (a→ b)→ [a]→ Par [b]
parMap f xs = do

vs← mapM (spawnP . f) xs
mapM get vs

mapM :: (a→ Par b)→ [a]→ Par [b]
mapM f [ ] = return [ ]
mapM f (x : xs) = do

r ← f x
rs← mapM f xs
return (r : rs)
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Using parMap

Sequential version:

collatzMax :: Integer→ Integer→ Int
collatzMax lo hi = maximum (map (length . collatzSeq) [ lo . . hi])

Parallel version:

parCollatzMax :: Integer→ Integer→ Int
parCollatzMax lo hi =

maximum (runPar (parMap (length . collatzSeq) [ lo . . hi]))
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Chunking

Spawning a computation for each list element causes a
granularity problem:

I too many too small computations are spawned too fast;
I we still get some speedup, but not as much as we’d like.

A common solution is to chunk the list:

type ChunkSize = Int
chunk :: Int→ [a]→ [[a]]
chunk n xs = case splitAt n xs of
(ys, [ ]) → [ys]
(ys, zs)→ ys : chunk n zs
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Using chunking

parCollatzMax :: ChunkSize→ Integer→ Integer→ Int
parCollatzMax cs lo hi =

maximum (
concat (

runPar (
parMap
(map (length . collatzSeq))
(chunk cs [ lo . . hi])

)
)

)
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N Queens



The N Queens problem

qZ0Z0Z0Z
Z0Z0l0Z0
0Z0Z0Z0l
Z0Z0ZqZ0
0ZqZ0Z0Z
Z0Z0Z0l0
0l0Z0Z0Z
Z0ZqZ0Z0

How many solutions for a given board size?
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Idea

I Pick queens row by row.
I Generate a tree of all possible choices.
I Remove illegal choices from the tree.
I Traverse the tree, counting the number of valid solutions.
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Generate, filter, explore
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Demo



Conclusions



What have we learned

I Annotating a program for parallelisation is (relatively) easy.
I We can build domain-specific abstractions such as

parMap .
I Deterministic results are guaranteed – no deadlocks, no

race conditions.
I We can focus on achieving speedup.
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Related approaches

I The ParIO monad combines IO with Par – at the price
of determinism.

I The Async monad is similar to IO , but for concurrent
applications.
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Learn more

I Time for some exercises now.
I Lots of online material.
I Simon Marlow’s book.
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Exercises



Exercises

I Try to write twice to a single IVar .
I Reproduce the Collatz example.
I Replace the Collatz function by the Fibonacci function –

what changes?
I Try to abstract and define a function

parMapChunked :: NFData b⇒
ChunkSize→ (a→ b)→ [a]→ Par [b]

I Try to abstract and define a “skeleton” for map-reduce.
I Reproduce the N Queens example.
I From Simon Marlow’s materials: try Sudoku solving,

k-means, conference timetable scheduling; all using the
Par monad.
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