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Background:

The Parallel GHC Project



The Parallel GHC Project

I Currently the largest project we have at Well-Typed LLP.
I Funded by Microsoft Research in Cambridge (GHC HQ).
I Runs for two years (until June 2012).



The Parallel GHC Project
Goals

I polish GHC’s support for parallel programming,
I demonstrate the parallel programming in Haskell works

and scales,
I develop and improve tools that support parallel

programming in Haskell,
I develop tutorials and information material.



The Parallel GHC Project
Participating organizations

I Los Alamos National Labs (USA)
Monte Carlo algorithms for particle and radiation simulation

I Dragonfly (New Zealand)
Implementation of a fast Bayesian model fitter

I Internet Initiative Japan (Japan)
High-performance network servers

I Telefonica R+D (Spain)
Parallel/distributed graph algorithms

Each partner organization has a Haskell project involving
parallelism they want to implement.
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The Parallel GHC Project
Workflow

I Organizations discuss their project plans with us.
I We jointly develop implementation goals and the design of

the programs.
I The organizations develop the programs, with our

assistance.
I We identify potential problems and stumbling blocks.
I We spark off separate mini-projects in order to fix such

problems.
I We communicate ideas for further improvements to the

GHC developers.
I We collect results and experiences and extract it into

regular project digests, and later into new tutorial material.



Mini-projects so far

I A web portal for parallel programming in Haskell.
I A monthly newsletter on parallel programming in Haskell.
I Fixing hidden limits in the GHC IO manager.
I A Haskell binding for MPI.
I Better visualizations in ThreadScope.
I Parallel PRNGs in Haskell.
I . . .



Rest of this talk

A case study: trying to (re)implement parallel Maximal Clique
Enumeration in Haskell.



Maximal Clique Enumeration



Maximal Clique Enumeration
Definitions

Clique

A clique in an undirected graph is a complete subgraph, i.e., a
subgraph where every two vertices are connected.

Maximal Clique

A clique in a graph is called maximal if there is no larger clique
containing it.

Maximal Clique Enumeration (MCE)

Given an undirected graph, determine all maximal cliques in
that graph.
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Maximal Clique Enumeration
Background

I Problem is exponential in the worst case as there are
graphs with exponentially many maximal cliques (in the
size of vertices).

I There are several MCE algorithms that perform well in
practice.

I We’re going to look at the Bron-Kerbosch (BK) algorithm
(1973) – good combination of performance and simplicity.



BK state

BK maintains a state of three sets of vertices:

compsub active clique
cand candidates for extending the active clique
excl possible extensions of the active clique that would

lead to duplication (originally called not )

Initial state (given graph G = (V, E) ):

compsub := ∅
cand := V
excl := ∅
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BK in imperative pseudocode

bk (compsub, cand, excl) :
if null cand && null excl then report compsub
foreach v in cand :

bk (compsub ∪ {v}, cand ∩ N(v), excl ∩ N(v))
cand := cand \ {v}
excl := excl ∪ {v}

where N(v) are the neighbours of vertex v .



BK in Haskell

type Clique = [Vertex]
bk :: Clique→ [Vertex]→ [Vertex]→ [Clique]
bk compsub cand excl =

if null cand && null excl then [compsub]
else loop cand excl

where
loop :: [Vertex]→ [Vertex]→ [Clique]
loop [ ] = [ ]
loop (v : cand′) excl =

bk (v : compsub) (cand′ ‘res‘ v) (excl ‘res‘ v) ++
loop cand′ (v : excl)

where vs ‘res‘ v removes the vertices that are not connected
to v from vs .



Graph

We should abstract over an input graph.

type Vertex = Int
class Graph g where

size :: g→ Int
vertices :: g→ [Vertex]
connected :: g→ Vertex→ Vertex→ Bool



Bron-Kerbosch

bronKerbosch :: Graph g⇒ g→ [Clique]
bronKerbosch g = bk [ ] (vertices g) [ ] -- initial state

where
bk = . . . -- as before
res :: [Vertex]→ Vertex→ [Vertex]
res vs v = filter (connected g v) vs



Example

gr = edgesToGraph
[(1, 2), (1, 3), (2, 3), (2, 4), (2, 5), (3, 4), (4, 5), (4, 6), (5, 6)]

test = bronKerbosch gr = = [[3, 2, 1], [4, 3, 2], [5, 4, 2], [6, 5, 4]]
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Another maximal clique found.



Improving the (sequential) algorithm

Some minor modifications help making BK more efficient:
I pick a suitable graph representation ( connected should

be efficient),
I not traverse all the elements of cand ; instead, pick the

most connected candidate p first, and subsequently only
consider candidates that are not connected to p .



Strategies for Deterministic Parallelism



Parallelism using annotations
Overview

I In Haskell, we can annotate computations for parallel
execution.

I Annotations create sparks.
I When cores are idle, the Haskell RTS will steal sparks and

run them.
I All low-level details are managed by the RTS.
I Due to Haskell’s purity, using annotations does not affect

the result of a program (speculative, deterministic
parallelism).



Parallelism using annotations
Interface

data Eval a -- (abstract), annotated terms
instance Monad Eval -- we can combine such terms
type Strategy a = a→ Eval a -- a strategy annotates a term
dot :: Strategy a→ Strategy a→ Strategy a

-- composition of strategies
using :: a→ Strategy a→ a -- applying a strategy



Basic strategies

-- evaluation:
r0 :: Strategy a -- none
rseq :: Strategy a -- WHNF
rdeepseq :: NFData a⇒ Strategy a -- NF
rpar :: Strategy a -- WHNF in parallel

Names start with “r”: think “reduce”.

r0 = return

The first three strategies determine how much of a term is
evaluated. The rpar strategy introduces a spark.



Strategies are datatype-oriented

Given a datatype, it’s easy to define strategy combinators.

For example:

evalList, parList :: Strategy a→ Strategy [a]
evalList s [ ] = return [ ]
evalList s (x : xs) = do

r ← s x
rs← evalList s xs
return (r : rs)

parList s = evalList (rpar ‘dot‘ s)

Similarly for all members of Traversable .
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Back to BK



Parallelizing BK

I BK is a recursive algorithm.
I Parallelization via the data we operate on does not seem

suitable.

I Instead, we’d like to parallelize on the call tree.
I We can just turn the call tree into a data structure.
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BK revisited

type BKState = (Clique, [Vertex], [Vertex])
data BKTree = Fork BKState [BKTree] | Report Clique

bronKerbosch′ :: Graph g⇒ g→ [Clique]
bronKerbosch′ g = bk [ ] (vertices g) [ ] -- initial state

where
bk compsub cand excl = . . .
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Extracting the cliques

extract :: BKTree→ [Clique]
extract (Fork xs) = concat (map extract xs)
extract (Report c) = [c]

property g = extract (bronKerbosch′ g) = = bronKerbosch g
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A strategy for call trees

Ideally, this one would do:

strategy :: Strategy BKTree
strategy (Fork s xs) = fmap (Fork s) (parList strategy xs)
strategy (Report c) = fmap Report (rdeepseq c)

Problems:
I Too many sparks created in too little time (spark pool

overflows).
I Too many sparks that are too small to do any good.
I Sequential optimizations interfere with parallelisation.
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Options

I Reduce the number of sparks, by chunking the lists.
I Increase granularity, also by chunking the lists.
I Limit the depth of parallelization (but that’s not good due to

the imbalanced nature of the call trees).
I Don’t create sparks for leaves.
I . . .

All of these can be achieved just by changing the strategy.
Nothing else in the program has to be touched.
Thus:

I getting some form of speedup even for an algorithm that
isn’t trivial to parallelize is actually not a lot of work;

I the call tree technique is widely applicable and extensible.



Discussion

We have found strategies that provide reasonable speedups up
to eight cores, but:

I these strategies aren’t dynamic enough;
I some graphs can usually be found that work bad with a

given strategy, but better with others;
I the speedup is not linear;
I current tests indicate that things get slower again from

eight cores up.



Discussion

On the other hand:
I Schmidt et al. “A scalable, parallel algorithm for maximal

clique enumeration” use a similar technique (which in fact
inspired us) in an imperative/distributed setting and report
linear speedups up to 2048 cores.

I There’s (relatively speaking) much more effort involved in
implementing the technique.



Future work

I More testing and examples.
I Strategies should be more dynamic.
I Provide more information in the call tree.
I More control over RTS needed after all?
I Overhead for collecting cliques in deterministic order?
I Another approach to deterministic parallelism:

Par monad, with user-implementable schedulers.
I Also try distributed systems via “Cloud Haskell”.
I Try more graph algorithms.
I . . .


