Parallelizing
Maximal Clique Enumeration
in Haskell

Andres L6h
(joint work with Toni Cebrian)

Well-Typed LLP

7 February 2012

®Well-Typed

Background:
The Parallel GHC Project

The Parallel GHC Project

» Currently the largest project we have at Well-Typed LLP.
» Funded by Microsoft Research in Cambridge (GHC HQ).
» Runs for two years (until June 2012).

®Well-Typed

The Parallel GHC Project

Goals

v

polish GHC’s support for parallel programming,

demonstrate the parallel programming in Haskell works
and scales,

develop and improve tools that support parallel
programming in Haskell,

develop tutorials and information material.

v

v

v

®Well-Typed

The Parallel GHC Project

Participating organizations

» Los Alamos National Labs (USA)
Monte Carlo algorithms for particle and radiation simulation

®Well-Typed

The Parallel GHC Project

Participating organizations

» Los Alamos National Labs (USA)
Monte Carlo algorithms for particle and radiation simulation

» Dragonfly (New Zealand)
Implementation of a fast Bayesian model fitter

®Well-Typed

The Parallel GHC Project

Participating organizations

» Los Alamos National Labs (USA)
Monte Carlo algorithms for particle and radiation simulation

» Dragonfly (New Zealand)
Implementation of a fast Bayesian model fitter

» Internet Initiative Japan (Japan)
High-performance network servers

®Well-Typed

The Parallel GHC Project

Participating organizations

» Los Alamos National Labs (USA)
Monte Carlo algorithms for particle and radiation simulation

» Dragonfly (New Zealand)
Implementation of a fast Bayesian model fitter

» Internet Initiative Japan (Japan)
High-performance network servers

» Telefonica R+D (Spain)
Parallel/distributed graph algorithms

®Well-Typed

The Parallel GHC Project

Participating organizations

» Los Alamos National Labs (USA)
Monte Carlo algorithms for particle and radiation simulation

» Dragonfly (New Zealand)
Implementation of a fast Bayesian model fitter

» Internet Initiative Japan (Japan)
High-performance network servers

» Telefonica R+D (Spain)
Parallel/distributed graph algorithms

Each partner organization has a Haskell project involving
parallelism they want to implement.

®Well-Typed

The Parallel GHC Project

Workflow

» Organizations discuss their project plans with us.

» We jointly develop implementation goals and the design of
the programs.

» The organizations develop the programs, with our
assistance.

» We identify potential problems and stumbling blocks.

» We spark off separate mini-projects in order to fix such
problems.

» We communicate ideas for further improvements to the
GHC developers.

» We collect results and experiences and extract it into
regular project digests, and later into new tutorial material.

®Well-Typed

Mini-projects so far

v

A web portal for parallel programming in Haskell.

v

A monthly newsletter on parallel programming in Haskell.
Fixing hidden limits in the GHC IO manager.

A Haskell binding for MPI.

Better visualizations in ThreadScope.

Parallel PRNGs in Haskell.

v

v

v

v

®Well-Typed

Rest of this talk

A case study: trying to (re)implement parallel Maximal Clique
Enumeration in Haskell.

®Well-Typed

Maximal Clique Enumeration

Maximal Clique Enumeration

Definitions
Clique

A clique in an undirected graph is a complete subgraph, i.e., a
subgraph where every two vertices are connected.

®Well-Typed

Maximal Clique Enumeration

Definitions

Clique

A clique in an undirected graph is a complete subgraph, i.e., a
subgraph where every two vertices are connected.

Maximal Clique

A clique in a graph is called maximal if there is no larger clique
containing it.

®Well-Typed

Maximal Clique Enumeration

Definitions

Clique

A clique in an undirected graph is a complete subgraph, i.e., a
subgraph where every two vertices are connected.

Maximal Clique

A clique in a graph is called maximal if there is no larger clique
containing it.

Maximal Clique Enumeration (MCE)

Given an undirected graph, determine all maximal cliques in
that graph.

®Well-Typed

Maximal Clique Enumeration
Background

» Problem is exponential in the worst case as there are
graphs with exponentially many maximal cliques (in the
size of vertices).

» There are several MCE algorithms that perform well in
practice.

» We're going to look at the Bron-Kerbosch (BK) algorithm
(1973) — good combination of performance and simplicity.

®Well-Typed

BK state

BK maintains a state of three sets of vertices:

compsub active clique

cand candidates for extending the active clique
excl possible extensions of the active clique that would
lead to duplication (originally called not)

®Well-Typed

BK state

BK maintains a state of three sets of vertices:

compsub active clique

cand candidates for extending the active clique

excl possible extensions of the active clique that would
lead to duplication (originally called not)

Initial state (given graph G = (V,E)):

compsub := ()
cand Vv
excl =10

®Well-Typed

BK in imperative pseudocode

bk (compsub, cand, excl) :
if null cand && null excl then report compsub
foreach v in cand:
bk (compsub U {v},cand N N(v),excl N N(v))
cand:=cand\ {v}
excl :=exclU{v}

where N(v) are the neighbours of vertex v .

®Well-Typed

BK in Haskell

type Clique = [Vertex]
bk :: Clique — [Vertex] — [Vertex] — [Clique]
bk compsub cand excl =
if null cand && null excl then [compsub]
else loop cand excl
where
loop :: [Vertex] — [Vertex] — [Clique]
loop] - =]l
loop (v : cand’) excl =
bk (v : compsub) (cand’ ‘res' v) (excl ‘res’' v) +
loop cand’ (v : excl)

where vs ‘res‘' v removes the vertices that are not connected
to v from vs.

®Well-Typed

Graph

We should abstract over an input graph.

type Vertex = Int

class Graph g where
size g — Int
vertices ::g — [Vertex]
connected :: g — Vertex — Vertex — Bool

®Well-Typed

Bron-Kerbosch

bronKerbosch :: Graph g = g — [Clique]

bronKerbosch g = bk [] (vertices g) [] -- initial state
where
bk =... --as before

res :: [Vertex] — Vertex — [Vertex]
res vs v = filter (connected g v) vs

®Well-Typed

Example

gr = edgesToGraph
[(1,2),(1,3),(2,3),(2,4),(2,5),(3,4), (4,5),(4,6),(5,6)]
test = bronKerbosch gr == [[3,2,1],[4, 3,2],[5,4,2],[6, 5, 4]]

a—mn—=
o—h~—w

®Well-Typed

Example

gr = edgesToGraph
[(1,2),(1,3),(2,3),(2,4),(2,5),(3,4), (4,5),(4,6),(5,6)]
test = bronKerbosch gr == [[3,2,1],[4, 3,2],[5,4,2],[6, 5, 4]]

a—N-— =
o—h—w

®Well-Typed

Example

gr = edgesToGraph
[(1,2),(1,3),(2,3),(2,4),(2,5),(3,4), (4,5),(4,6),(5,6)]
test = bronKerbosch gr == [[3,2,1],[4, 3,2],[5,4,2],[6, 5, 4]]

a—nn— =
o—h—w

®Well-Typed

Example

gr = edgesToGraph
[(1,2),(1,3),(2,3),(2,4),(2,5),(3,4), (4,5),(4,6),(5,6)]
test = bronKerbosch gr == [[3,2,1],[4, 3,2],[5,4,2],[6, 5, 4]]

a—mn—=
o—h— W

®Well-Typed

Example

gr = edgesToGraph
[(1,2),(1,3),(2,3),(2,4),(2,5),(3,4), (4,5),(4,6),(5,6)]
test = bronKerbosch gr == [[3,2,1],[4, 3,2],[5,4,2],[6, 5, 4]]

1
|
2
|
5

NI

Found a maximal clique; backtrack.

®Well-Typed

Example

gr = edgesToGraph
[(1,2),(1,3),(2,3),(2,4),(2,5),(3,4), (4,5),(4,6),(5,6)]
test = bronKerbosch gr == [[3,2,1],[4, 3,2],[5,4,2],[6, 5, 4]]

Excluded vertices prevent reporting the same clique again.

®Well-Typed

Example

gr = edgesToGraph
[(1,2),(1,3),(2,3),(2,4),(2,5),(3,4), (4,5),(4,6),(5,6)]

test = bronKerbosch gr == [[3,2,1],[4, 3,2],[5,4,2],[6, 5, 4]]

Excluded vertices prevent reporting the same clique again.

®Well-Typed

Example

gr = edgesToGraph
[(1,2),(1,3),(2,3),(2,4),(2,5),(3,4), (4,5),(4,6),(5,6)]

test = bronKerbosch gr == [[3,2,1],[4, 3,2],[5,4,2],[6, 5, 4]]

Excluded vertices prevent reporting the same clique again.

®Well-Typed

Example

gr = edgesToGraph
[(1,2),(1,3),(2,3),(2,4),(2,5),(3,4), (4,5),(4,6),(5,6)]
test = bronKerbosch gr == [[3,2,1],[4, 3,2],[5,4,2],[6, 5, 4]]

1
|
2
|
5

NI

Another maximal clique found.

®Well-Typed

Improving the (sequential) algorithm

Some minor modifications help making BK more efficient:

» pick a suitable graph representation (connected should
be efficient),

» not traverse all the elements of cand ; instead, pick the
most connected candidate p first, and subsequently only

consider candidates that are not connected to p .

®Well-Typed

Strategies for Deterministic Parallelism

Parallelism using annotations

Overview

» In Haskell, we can annotate computations for parallel
execution.

» Annotations create sparks.

» When cores are idle, the Haskell RTS will steal sparks and
run them.

» All low-level details are managed by the RTS.

» Due to Haskell’s purity, using annotations does not affect
the result of a program (speculative, deterministic
parallelism).

®Well-Typed

Parallelism using annotations

Interface
data Eval a -- (abstract), annotated terms
instance Monad Eval -- we can combine such terms

type Strategy a = a — Eval a -- a strategy annotates a term

dot :: Strategy a — Strategy a — Strategy a
-- composition of strategies
using :: a — Strategy a — a -- applying a strategy

®Well-Typed

Basic strategies

r0 * Strategy a
rseq - Strategy a
rdeepseq :: NFData a = Strategy a
rpar :: Strategy a

Names start with “r”; think “reduce”.

rO = return

-- evaluation:

-- none

-- WHNF

-- NF

-- WHNF in parallel

The first three strategies determine how much of a term is
evaluated. The rpar strategy introduces a spark.

®Well-Typed

Strategies are datatype-oriented

Given a datatype, it's easy to define strategy combinators.

For example:
evalList, parList :: Strategy a — Strategy [a]
evallist s [] = return []
evalList s (x: xs) = do
r < sx

rs < evallist s xs
return (r:rs)

parList s = evalList (rpar ‘dot' s)

®Well-Typed

Strategies are datatype-oriented

Given a datatype, it's easy to define strategy combinators.

For example:
evalList, parList :: Strategy a — Strategy [a]
evallist s [] = return []
evalList s (x: xs) = do
r < sx

rs < evalList s xs
return (r:rs)
parList s = evalList (rpar ‘dot' s)

Similarly for all members of Traversable .

®Well-Typed

Back to BK

Parallelizing BK

» BKis a recursive algorithm.

» Parallelization via the data we operate on does not seem
suitable.

®Well-Typed

Parallelizing BK

» BKis a recursive algorithm.

» Parallelization via the data we operate on does not seem
suitable.

» Instead, we'd like to parallelize on the call tree.

®Well-Typed

Parallelizing BK

v

BK is a recursive algorithm.

Parallelization via the data we operate on does not seem
suitable.

Instead, we'd like to parallelize on the call tree.
We can just turn the call tree into a data structure.

v

v

v

®Well-Typed

BK revisited

bronKerbosch'’ :: Graph g = g — [Clique]
bronKerbosch’ g = bk [] (vertices g) [] -- initial state
where
bk compsub cand excl = . ..
if null cand && null excl then [compsub]
else loop cand excl
where
loop [] - =l
loop (v : cand’) excl =
bk (v : compsub) (cand’ ‘res’ v) (excl ‘res‘ v)
loop cand’ (v : excl)

res vs v = filter (connected g v) vs

®Well-Typed

BK revisited

type BKState = (Clique, [Vertex], [Vertex])
data BKTree = Fork BKState [BKTree] | Report Clique

bronKerbosch'’ :: Graph g = g — [Clique]
bronKerbosch’ g = bk [] (vertices g) [] -- initial state
where
bk compsub cand excl = . ..
if null cand && null excl then [compsub]
else loop cand excl
where
loop [] - =l
loop (v : cand’) excl =
bk (v : compsub) (cand’ ‘res’ v) (excl ‘res‘ v)
loop cand’ (v : excl)

res vs v = filter (connected g v) vs

®Well-Typed

BK revisited

type BKState = (Clique, [Vertex], [Vertex])
data BKTree = Fork BKState [BKTree] | Report Clique

bronKerbosch' :: Graph g = g — BKTree
bronKerbosch’ g = bk [] (vertices g) [] -- initial state
where
bk compsub cand excl = . ..
if null cand && null excl then [compsub]
else loop cand excl
where
loop [] - =l
loop (v : cand’) excl =
bk (v : compsub) (cand’ ‘res’ v) (excl ‘res‘ v)
loop cand’ (v : excl)

res vs v = filter (connected g v) vs

®Well-Typed

BK revisited

type BKState = (Clique, [Vertex], [Vertex])
data BKTree = Fork BKState [BKTree] | Report Clique

bronKerbosch' :: Graph g = g — BKTree
bronKerbosch’ g = bk [] (vertices g) [] -- initial state
where
bk compsub cand excl = Fork (compsub, cand, excl) $
if null cand && null excl then [compsub]
else loop cand excl
where
loop [] - =l
loop (v : cand’) excl =
bk (v : compsub) (cand’ ‘res’ v) (excl ‘res‘ v)
loop cand’ (v : excl)

res vs v = filter (connected g v) vs

®Well-Typed

BK revisited

type BKState = (Clique, [Vertex], [Vertex])
data BKTree = Fork BKState [BKTree] | Report Clique

bronKerbosch' :: Graph g = g — BKTree
bronKerbosch’ g = bk [] (vertices g) [] -- initial state
where
bk compsub cand excl = Fork (compsub, cand, excl) $
if null cand && null excl then [Report compsub]
else loop cand excl
where
loop [] - =l
loop (v : cand’) excl =
bk (v : compsub) (cand’ ‘res’ v) (excl ‘res‘ v)
loop cand’ (v : excl)

res vs v = filter (connected g v) vs

®Well-Typed

BK revisited

type BKState = (Clique, [Vertex], [Vertex])
data BKTree = Fork BKState [BKTree] | Report Clique

bronKerbosch' :: Graph g = g — BKTree
bronKerbosch’ g = bk [] (vertices g) [] -- initial state
where
bk compsub cand excl = Fork (compsub, cand, excl) $
if null cand && null excl then [Report compsub]
else loop cand excl
where
loop [] ~ =1
loop (v : cand’) excl =
bk (v : compsub) (cand’ ‘res’ v) (excl ‘res‘ v):
loop cand’ (v : excl)
res vs v = filter (connected g v) vs

®Well-Typed

Extracting the cliques

extract :: BKTree — [Clique]
extract (Fork _ xs) = concat (map extract xs)
extract (Reportc) = [c]

®Well-Typed

Extracting the cliques

extract :: BKTree — [Clique]
extract (Fork _ xs) = concat (map extract xs)
extract (Reportc) = [c]

property g = extract (bronKerbosch'’ g) == bronKerbosch g

®Well-Typed

A strategy for call trees

Ideally, this one would do:

strategy :: Strategy BKTree
strategy (Fork s xs) = fmap (Fork s) (parList strategy xs)
strategy (Report ¢) = fmap Report (rdeepseq c)

®Well-Typed

A strategy for call trees

Ideally, this one would do:

strategy :: Strategy BKTree
strategy (Fork s xs) = fmap (Fork s) (parList strategy xs)
strategy (Report ¢) = fmap Report (rdeepseq c)

Problems:
» Too many sparks created in too little time (spark pool
overflows).
» Too many sparks that are too small to do any good.
» Sequential optimizations interfere with parallelisation.

®Well-Typed

Options

v

Reduce the number of sparks, by chunking the lists.
Increase granularity, also by chunking the lists.

v

v

Limit the depth of parallelization (but that’s not good due to
the imbalanced nature of the call trees).

Don’t create sparks for leaves.

> aan

v

All of these can be achieved just by changing the strategy.
Nothing else in the program has to be touched.
Thus:

» getting some form of speedup even for an algorithm that
isn’t trivial to parallelize is actually not a lot of work;

» the call tree technique is widely applicable and extensible.

®Well-Typed

Discussion

We have found strategies that provide reasonable speedups up
to eight cores, but:

>

>

these strategies aren’t dynamic enough;

some graphs can usually be found that work bad with a
given strategy, but better with others;

the speedup is not linear;

current tests indicate that things get slower again from
eight cores up.

®Well-Typed

Discussion

On the other hand:

» Schmidt et al. “A scalable, parallel algorithm for maximal
clique enumeration” use a similar technique (which in fact
inspired us) in an imperative/distributed setting and report
linear speedups up to 2048 cores.

» There’s (relatively speaking) much more effort involved in
implementing the technique.

®Well-Typed

Future work

» More testing and examples.

» Strategies should be more dynamic.

» Provide more information in the call tree.

» More control over RTS needed after all?

» Overhead for collecting cliques in deterministic order?

» Another approach to deterministic parallelism:
Par monad, with user-implementable schedulers.

» Also try distributed systems via “Cloud Haskell”.
» Try more graph algorithms.

®Well-Typed

