
Parallelizing
Maximal Clique Enumeration

in Haskell

Andres Löh
(joint work with Toni Cebrián)

Well-Typed LLP

7 February 2012

Background:

The Parallel GHC Project

The Parallel GHC Project

I Currently the largest project we have at Well-Typed LLP.
I Funded by Microsoft Research in Cambridge (GHC HQ).
I Runs for two years (until June 2012).

The Parallel GHC Project
Goals

I polish GHC’s support for parallel programming,
I demonstrate the parallel programming in Haskell works

and scales,
I develop and improve tools that support parallel

programming in Haskell,
I develop tutorials and information material.

The Parallel GHC Project
Participating organizations

I Los Alamos National Labs (USA)
Monte Carlo algorithms for particle and radiation simulation

I Dragonfly (New Zealand)
Implementation of a fast Bayesian model fitter

I Internet Initiative Japan (Japan)
High-performance network servers

I Telefonica R+D (Spain)
Parallel/distributed graph algorithms

Each partner organization has a Haskell project involving
parallelism they want to implement.

The Parallel GHC Project
Participating organizations

I Los Alamos National Labs (USA)
Monte Carlo algorithms for particle and radiation simulation

I Dragonfly (New Zealand)
Implementation of a fast Bayesian model fitter

I Internet Initiative Japan (Japan)
High-performance network servers

I Telefonica R+D (Spain)
Parallel/distributed graph algorithms

Each partner organization has a Haskell project involving
parallelism they want to implement.

The Parallel GHC Project
Participating organizations

I Los Alamos National Labs (USA)
Monte Carlo algorithms for particle and radiation simulation

I Dragonfly (New Zealand)
Implementation of a fast Bayesian model fitter

I Internet Initiative Japan (Japan)
High-performance network servers

I Telefonica R+D (Spain)
Parallel/distributed graph algorithms

Each partner organization has a Haskell project involving
parallelism they want to implement.

The Parallel GHC Project
Participating organizations

I Los Alamos National Labs (USA)
Monte Carlo algorithms for particle and radiation simulation

I Dragonfly (New Zealand)
Implementation of a fast Bayesian model fitter

I Internet Initiative Japan (Japan)
High-performance network servers

I Telefonica R+D (Spain)
Parallel/distributed graph algorithms

Each partner organization has a Haskell project involving
parallelism they want to implement.

The Parallel GHC Project
Participating organizations

I Los Alamos National Labs (USA)
Monte Carlo algorithms for particle and radiation simulation

I Dragonfly (New Zealand)
Implementation of a fast Bayesian model fitter

I Internet Initiative Japan (Japan)
High-performance network servers

I Telefonica R+D (Spain)
Parallel/distributed graph algorithms

Each partner organization has a Haskell project involving
parallelism they want to implement.

The Parallel GHC Project
Workflow

I Organizations discuss their project plans with us.
I We jointly develop implementation goals and the design of

the programs.
I The organizations develop the programs, with our

assistance.
I We identify potential problems and stumbling blocks.
I We spark off separate mini-projects in order to fix such

problems.
I We communicate ideas for further improvements to the

GHC developers.
I We collect results and experiences and extract it into

regular project digests, and later into new tutorial material.

Mini-projects so far

I A web portal for parallel programming in Haskell.
I A monthly newsletter on parallel programming in Haskell.
I Fixing hidden limits in the GHC IO manager.
I A Haskell binding for MPI.
I Better visualizations in ThreadScope.
I Parallel PRNGs in Haskell.
I . . .

Rest of this talk

A case study: trying to (re)implement parallel Maximal Clique
Enumeration in Haskell.

Maximal Clique Enumeration

Maximal Clique Enumeration
Definitions

Clique

A clique in an undirected graph is a complete subgraph, i.e., a
subgraph where every two vertices are connected.

Maximal Clique

A clique in a graph is called maximal if there is no larger clique
containing it.

Maximal Clique Enumeration (MCE)

Given an undirected graph, determine all maximal cliques in
that graph.

Maximal Clique Enumeration
Definitions

Clique

A clique in an undirected graph is a complete subgraph, i.e., a
subgraph where every two vertices are connected.

Maximal Clique

A clique in a graph is called maximal if there is no larger clique
containing it.

Maximal Clique Enumeration (MCE)

Given an undirected graph, determine all maximal cliques in
that graph.

Maximal Clique Enumeration
Definitions

Clique

A clique in an undirected graph is a complete subgraph, i.e., a
subgraph where every two vertices are connected.

Maximal Clique

A clique in a graph is called maximal if there is no larger clique
containing it.

Maximal Clique Enumeration (MCE)

Given an undirected graph, determine all maximal cliques in
that graph.

Maximal Clique Enumeration
Background

I Problem is exponential in the worst case as there are
graphs with exponentially many maximal cliques (in the
size of vertices).

I There are several MCE algorithms that perform well in
practice.

I We’re going to look at the Bron-Kerbosch (BK) algorithm
(1973) – good combination of performance and simplicity.

BK state

BK maintains a state of three sets of vertices:

compsub active clique
cand candidates for extending the active clique
excl possible extensions of the active clique that would

lead to duplication (originally called not)

Initial state (given graph G = (V, E)):

compsub := ∅
cand := V
excl := ∅

BK state

BK maintains a state of three sets of vertices:

compsub active clique
cand candidates for extending the active clique
excl possible extensions of the active clique that would

lead to duplication (originally called not)

Initial state (given graph G = (V, E)):

compsub := ∅
cand := V
excl := ∅

BK in imperative pseudocode

bk (compsub, cand, excl) :
if null cand && null excl then report compsub
foreach v in cand :

bk (compsub ∪ {v}, cand ∩ N(v), excl ∩ N(v))
cand := cand \ {v}
excl := excl ∪ {v}

where N(v) are the neighbours of vertex v .

BK in Haskell

type Clique = [Vertex]
bk :: Clique→ [Vertex]→ [Vertex]→ [Clique]
bk compsub cand excl =

if null cand && null excl then [compsub]
else loop cand excl

where
loop :: [Vertex]→ [Vertex]→ [Clique]
loop [] = []
loop (v : cand′) excl =

bk (v : compsub) (cand′ ‘res‘ v) (excl ‘res‘ v) ++
loop cand′ (v : excl)

where vs ‘res‘ v removes the vertices that are not connected
to v from vs .

Graph

We should abstract over an input graph.

type Vertex = Int
class Graph g where

size :: g→ Int
vertices :: g→ [Vertex]
connected :: g→ Vertex→ Vertex→ Bool

Bron-Kerbosch

bronKerbosch :: Graph g⇒ g→ [Clique]
bronKerbosch g = bk [] (vertices g) [] -- initial state

where
bk = . . . -- as before
res :: [Vertex]→ Vertex→ [Vertex]
res vs v = filter (connected g v) vs

Example

gr = edgesToGraph
[(1, 2), (1, 3), (2, 3), (2, 4), (2, 5), (3, 4), (4, 5), (4, 6), (5, 6)]

test = bronKerbosch gr = = [[3, 2, 1], [4, 3, 2], [5, 4, 2], [6, 5, 4]]

1

2

3

4

5 6

Example

gr = edgesToGraph
[(1, 2), (1, 3), (2, 3), (2, 4), (2, 5), (3, 4), (4, 5), (4, 6), (5, 6)]

test = bronKerbosch gr = = [[3, 2, 1], [4, 3, 2], [5, 4, 2], [6, 5, 4]]

1

2

3

4

5 6

Example

gr = edgesToGraph
[(1, 2), (1, 3), (2, 3), (2, 4), (2, 5), (3, 4), (4, 5), (4, 6), (5, 6)]

test = bronKerbosch gr = = [[3, 2, 1], [4, 3, 2], [5, 4, 2], [6, 5, 4]]

1

2

3

4

5 6

Example

gr = edgesToGraph
[(1, 2), (1, 3), (2, 3), (2, 4), (2, 5), (3, 4), (4, 5), (4, 6), (5, 6)]

test = bronKerbosch gr = = [[3, 2, 1], [4, 3, 2], [5, 4, 2], [6, 5, 4]]

1

2

3

4

5 6

Example

gr = edgesToGraph
[(1, 2), (1, 3), (2, 3), (2, 4), (2, 5), (3, 4), (4, 5), (4, 6), (5, 6)]

test = bronKerbosch gr = = [[3, 2, 1], [4, 3, 2], [5, 4, 2], [6, 5, 4]]

1

2

3

4

5 6

Found a maximal clique; backtrack.

Example

gr = edgesToGraph
[(1, 2), (1, 3), (2, 3), (2, 4), (2, 5), (3, 4), (4, 5), (4, 6), (5, 6)]

test = bronKerbosch gr = = [[3, 2, 1], [4, 3, 2], [5, 4, 2], [6, 5, 4]]

1

2

3

4

5 6

Excluded vertices prevent reporting the same clique again.

Example

gr = edgesToGraph
[(1, 2), (1, 3), (2, 3), (2, 4), (2, 5), (3, 4), (4, 5), (4, 6), (5, 6)]

test = bronKerbosch gr = = [[3, 2, 1], [4, 3, 2], [5, 4, 2], [6, 5, 4]]

1

2

3

4

5 6

Excluded vertices prevent reporting the same clique again.

Example

gr = edgesToGraph
[(1, 2), (1, 3), (2, 3), (2, 4), (2, 5), (3, 4), (4, 5), (4, 6), (5, 6)]

test = bronKerbosch gr = = [[3, 2, 1], [4, 3, 2], [5, 4, 2], [6, 5, 4]]

1

2

3

4

5 6

Excluded vertices prevent reporting the same clique again.

Example

gr = edgesToGraph
[(1, 2), (1, 3), (2, 3), (2, 4), (2, 5), (3, 4), (4, 5), (4, 6), (5, 6)]

test = bronKerbosch gr = = [[3, 2, 1], [4, 3, 2], [5, 4, 2], [6, 5, 4]]

1

2

3

4

5 6

Another maximal clique found.

Improving the (sequential) algorithm

Some minor modifications help making BK more efficient:
I pick a suitable graph representation (connected should

be efficient),
I not traverse all the elements of cand ; instead, pick the

most connected candidate p first, and subsequently only
consider candidates that are not connected to p .

Strategies for Deterministic Parallelism

Parallelism using annotations
Overview

I In Haskell, we can annotate computations for parallel
execution.

I Annotations create sparks.
I When cores are idle, the Haskell RTS will steal sparks and

run them.
I All low-level details are managed by the RTS.
I Due to Haskell’s purity, using annotations does not affect

the result of a program (speculative, deterministic
parallelism).

Parallelism using annotations
Interface

data Eval a -- (abstract), annotated terms
instance Monad Eval -- we can combine such terms
type Strategy a = a→ Eval a -- a strategy annotates a term
dot :: Strategy a→ Strategy a→ Strategy a

-- composition of strategies
using :: a→ Strategy a→ a -- applying a strategy

Basic strategies

-- evaluation:
r0 :: Strategy a -- none
rseq :: Strategy a -- WHNF
rdeepseq :: NFData a⇒ Strategy a -- NF
rpar :: Strategy a -- WHNF in parallel

Names start with “r”: think “reduce”.

r0 = return

The first three strategies determine how much of a term is
evaluated. The rpar strategy introduces a spark.

Strategies are datatype-oriented

Given a datatype, it’s easy to define strategy combinators.

For example:

evalList, parList :: Strategy a→ Strategy [a]
evalList s [] = return []
evalList s (x : xs) = do

r ← s x
rs← evalList s xs
return (r : rs)

parList s = evalList (rpar ‘dot‘ s)

Similarly for all members of Traversable .

Strategies are datatype-oriented

Given a datatype, it’s easy to define strategy combinators.

For example:

evalList, parList :: Strategy a→ Strategy [a]
evalList s [] = return []
evalList s (x : xs) = do

r ← s x
rs← evalList s xs
return (r : rs)

parList s = evalList (rpar ‘dot‘ s)

Similarly for all members of Traversable .

Back to BK

Parallelizing BK

I BK is a recursive algorithm.
I Parallelization via the data we operate on does not seem

suitable.

I Instead, we’d like to parallelize on the call tree.
I We can just turn the call tree into a data structure.

Parallelizing BK

I BK is a recursive algorithm.
I Parallelization via the data we operate on does not seem

suitable.
I Instead, we’d like to parallelize on the call tree.

I We can just turn the call tree into a data structure.

Parallelizing BK

I BK is a recursive algorithm.
I Parallelization via the data we operate on does not seem

suitable.
I Instead, we’d like to parallelize on the call tree.
I We can just turn the call tree into a data structure.

BK revisited

type BKState = (Clique, [Vertex], [Vertex])
data BKTree = Fork BKState [BKTree] | Report Clique

bronKerbosch′ :: Graph g⇒ g→ [Clique]
bronKerbosch′ g = bk [] (vertices g) [] -- initial state

where
bk compsub cand excl = . . .

if null cand && null excl then [compsub]
else loop cand excl

where
loop [] = []
loop (v : cand′) excl =

bk (v : compsub) (cand′ ‘res‘ v) (excl ‘res‘ v) ++
loop cand′ (v : excl)

res vs v = filter (connected g v) vs

BK revisited

type BKState = (Clique, [Vertex], [Vertex])
data BKTree = Fork BKState [BKTree] | Report Clique

bronKerbosch′ :: Graph g⇒ g→ [Clique]
bronKerbosch′ g = bk [] (vertices g) [] -- initial state

where
bk compsub cand excl = . . .

if null cand && null excl then [compsub]
else loop cand excl

where
loop [] = []
loop (v : cand′) excl =

bk (v : compsub) (cand′ ‘res‘ v) (excl ‘res‘ v) ++
loop cand′ (v : excl)

res vs v = filter (connected g v) vs

BK revisited

type BKState = (Clique, [Vertex], [Vertex])
data BKTree = Fork BKState [BKTree] | Report Clique

bronKerbosch′ :: Graph g⇒ g→ BKTree
bronKerbosch′ g = bk [] (vertices g) [] -- initial state

where
bk compsub cand excl = . . .

if null cand && null excl then [compsub]
else loop cand excl

where
loop [] = []
loop (v : cand′) excl =

bk (v : compsub) (cand′ ‘res‘ v) (excl ‘res‘ v) ++
loop cand′ (v : excl)

res vs v = filter (connected g v) vs

BK revisited

type BKState = (Clique, [Vertex], [Vertex])
data BKTree = Fork BKState [BKTree] | Report Clique

bronKerbosch′ :: Graph g⇒ g→ BKTree
bronKerbosch′ g = bk [] (vertices g) [] -- initial state

where
bk compsub cand excl = Fork (compsub, cand, excl) $

if null cand && null excl then [compsub]
else loop cand excl

where
loop [] = []
loop (v : cand′) excl =

bk (v : compsub) (cand′ ‘res‘ v) (excl ‘res‘ v) ++
loop cand′ (v : excl)

res vs v = filter (connected g v) vs

BK revisited

type BKState = (Clique, [Vertex], [Vertex])
data BKTree = Fork BKState [BKTree] | Report Clique

bronKerbosch′ :: Graph g⇒ g→ BKTree
bronKerbosch′ g = bk [] (vertices g) [] -- initial state

where
bk compsub cand excl = Fork (compsub, cand, excl) $

if null cand && null excl then [Report compsub]
else loop cand excl

where
loop [] = []
loop (v : cand′) excl =

bk (v : compsub) (cand′ ‘res‘ v) (excl ‘res‘ v) ++
loop cand′ (v : excl)

res vs v = filter (connected g v) vs

BK revisited

type BKState = (Clique, [Vertex], [Vertex])
data BKTree = Fork BKState [BKTree] | Report Clique

bronKerbosch′ :: Graph g⇒ g→ BKTree
bronKerbosch′ g = bk [] (vertices g) [] -- initial state

where
bk compsub cand excl = Fork (compsub, cand, excl) $

if null cand && null excl then [Report compsub]
else loop cand excl

where
loop [] = []
loop (v : cand′) excl =

bk (v : compsub) (cand′ ‘res‘ v) (excl ‘res‘ v) :
loop cand′ (v : excl)

res vs v = filter (connected g v) vs

Extracting the cliques

extract :: BKTree→ [Clique]
extract (Fork xs) = concat (map extract xs)
extract (Report c) = [c]

property g = extract (bronKerbosch′ g) = = bronKerbosch g

Extracting the cliques

extract :: BKTree→ [Clique]
extract (Fork xs) = concat (map extract xs)
extract (Report c) = [c]

property g = extract (bronKerbosch′ g) = = bronKerbosch g

A strategy for call trees

Ideally, this one would do:

strategy :: Strategy BKTree
strategy (Fork s xs) = fmap (Fork s) (parList strategy xs)
strategy (Report c) = fmap Report (rdeepseq c)

Problems:
I Too many sparks created in too little time (spark pool

overflows).
I Too many sparks that are too small to do any good.
I Sequential optimizations interfere with parallelisation.

A strategy for call trees

Ideally, this one would do:

strategy :: Strategy BKTree
strategy (Fork s xs) = fmap (Fork s) (parList strategy xs)
strategy (Report c) = fmap Report (rdeepseq c)

Problems:
I Too many sparks created in too little time (spark pool

overflows).
I Too many sparks that are too small to do any good.
I Sequential optimizations interfere with parallelisation.

Options

I Reduce the number of sparks, by chunking the lists.
I Increase granularity, also by chunking the lists.
I Limit the depth of parallelization (but that’s not good due to

the imbalanced nature of the call trees).
I Don’t create sparks for leaves.
I . . .

All of these can be achieved just by changing the strategy.
Nothing else in the program has to be touched.
Thus:

I getting some form of speedup even for an algorithm that
isn’t trivial to parallelize is actually not a lot of work;

I the call tree technique is widely applicable and extensible.

Discussion

We have found strategies that provide reasonable speedups up
to eight cores, but:

I these strategies aren’t dynamic enough;
I some graphs can usually be found that work bad with a

given strategy, but better with others;
I the speedup is not linear;
I current tests indicate that things get slower again from

eight cores up.

Discussion

On the other hand:
I Schmidt et al. “A scalable, parallel algorithm for maximal

clique enumeration” use a similar technique (which in fact
inspired us) in an imperative/distributed setting and report
linear speedups up to 2048 cores.

I There’s (relatively speaking) much more effort involved in
implementing the technique.

Future work

I More testing and examples.
I Strategies should be more dynamic.
I Provide more information in the call tree.
I More control over RTS needed after all?
I Overhead for collecting cliques in deterministic order?
I Another approach to deterministic parallelism:

Par monad, with user-implementable schedulers.
I Also try distributed systems via “Cloud Haskell”.
I Try more graph algorithms.
I . . .

