
Dependency-style
Generic Haskell

Andres Löh, Dave Clarke, Johan Jeuring
Universiteit Utrecht
andres@cs.uu.nl

26th August 2003

Overview

➙ Classic Generic Haskell
– Generic programming in Classic Generic Haskell
– The problem with Classic Generic Haskell

➙ Solution: Dependency-style Generic Haskell
➙ Typing Dependency-style generic functions
➙ Examples

– Classic generic functions
– Generic traversal

➙ Comparison with type classes
➙ Conclusions

Classic Generic Haskell

➙ Generic Haskell = Haskell + generic functions (+ generic
datatypes)

➙ generic = indexed by a type argument
➙ a generic function usually is defined inductively over the

structure of datatypes
➙ thus, generic functions work for all types in a generic way
➙ Generic Haskell is implemented as a preprocessor that

translates generic functions into Haskell
➙ translation proceeds by specialisation
➙ the theory is based on Ralf Hinze’s several papers about

generic programming in Haskell
➙ typical generic functions are: mapping, ordering, (de)coding,

(un)parsing, generic traversals, operations on type-indexed
datatypes

Programming in Classic Generic Haskell

A generic comparison function looks as follows:

data Ordering = LT | EQ | GT
type Comp〈〈?〉〉 t = t → t → Ordering
type Comp〈〈κ → κ′〉〉 t = ∀a.Comp〈〈κ〉〉 a → Comp〈〈κ′〉〉 (t a)
comp〈t ::κ〉 :: Comp〈〈κ〉〉 t
comp〈Unit〉 Unit Unit = EQ
comp〈Sum〉 compa compb (Inl a1) (Inl a2) = compa a1 a2
comp〈Sum〉 compa compb (Inl) (Inr) = LT
comp〈Sum〉 compa compb (Inr) (Inl) = GT
comp〈Sum〉 compa compb (Inr b1) (Inr b2) = compb b1 b2
comp〈Prod〉 compa compb (a1 , b1) (a2 , b2) =

case compa a1 a2 of
EQ → compb b1 b2
r → r

comp〈Int〉 i1 i2 = compare i1 i2

A closer look
A kind-indexed type (kind argument in 〈〈·〉〉):

type Comp〈〈?〉〉 t = t → t → Ordering
The type of the function on normal (i.e. kind ?) type arguments.

type Comp〈〈κ → κ′〉〉 t = ∀a.Comp〈〈κ〉〉 a → Comp〈〈κ′〉〉 (t a)
The type of the function on type constructors.

A closer look
A kind-indexed type (kind argument in 〈〈·〉〉):

type Comp〈〈?〉〉 t = t → t → Ordering
The type of the function on normal (i.e. kind ?) type arguments.

type Comp〈〈κ → κ′〉〉 t = ∀a.Comp〈〈κ〉〉 a → Comp〈〈κ′〉〉 (t a)
The type of the function on type constructors.

A type signature:

comp〈t ::κ〉 :: Comp〈〈κ〉〉 t
The type is assigned to the function.

A closer look — contd.
Multiple cases, for different type patterns (in 〈·〉):

A closer look — contd.
Multiple cases, for different type patterns (in 〈·〉):

comp〈Unit〉 Unit Unit = EQ

The one-element type Unit is defined as follows:

data Unit = Unit

A closer look — contd.
Multiple cases, for different type patterns (in 〈·〉):

comp〈Unit〉 Unit Unit = EQ

The one-element type Unit is defined as follows:

data Unit = Unit

comp〈Sum〉 compa compb (Inl a1) (Inl a2) = compa a1 a2
comp〈Sum〉 compa compb (Inl) (Inr) = LT
comp〈Sum〉 compa compb (Inr) (Inl) = GT
comp〈Sum〉 compa compb (Inr b1) (Inr b2) = compb b1 b2

The type constructor Sum represents choice:

data Sum a b = Inl a | Inr b

➙ Sum is a type constructor of kind ? → ? → ?
➙ the cases for Sum get two comparison functions as arguments
➙ the definition of comp is written as a catamorphism

A closer look — contd.

comp〈Prod〉 compa compb (a1 , b1) (a2 , b2) =
case compa a1 a2 of

EQ → compb b1 b2
r → r

The type Prod a b contains pairs of a’s and b’s:

data Prod a b = (a, b)

A closer look — contd.

comp〈Prod〉 compa compb (a1 , b1) (a2 , b2) =
case compa a1 a2 of

EQ → compb b1 b2
r → r

The type Prod a b contains pairs of a’s and b’s:

data Prod a b = (a, b)

Haskell datatypes can be represented by isomorphic datatypes that
are built from Unit, Sum, Prod, plus type application, abstraction and
recursion, and a few primitive types, such as Int:

comp〈Int〉 i1 i2 = compare i1 i2
Here, compare denotes the standard comparison function defined in
the prelude.

A closer look — contd.

comp〈Prod〉 compa compb (a1 , b1) (a2 , b2) =
case compa a1 a2 of

EQ → compb b1 b2
r → r

The type Prod a b contains pairs of a’s and b’s:

data Prod a b = (a, b)

Haskell datatypes can be represented by isomorphic datatypes that
are built from Unit, Sum, Prod, plus type application, abstraction and
recursion, and a few primitive types, such as Int:

comp〈Int〉 i1 i2 = compare i1 i2
Here, compare denotes the standard comparison function defined in
the prelude.

In this style of generic definition, the type patterns
are always simple types or type constructors.

The virtue of having kind-indexed types
The generic function can be used on types of different kinds:

data Tree a = Node (Tree a) (Tree a) | Leaf a
t1 = Node (Leaf 3) (Leaf 7)
t2 = Node (Leaf 3) (Leaf 5)
comp〈Tree Int〉 :: Tree Int → Tree Int → Ordering
comp〈Tree〉 :: ∀a.(a → a → Ordering) → (Tree a → Tree a → Ordering)
comp〈Tree Int〉 t1 t2 GT
comp〈Tree〉 (λx y → EQ) t1 t2 EQ

The virtue of having kind-indexed types
The generic function can be used on types of different kinds:

data Tree a = Node (Tree a) (Tree a) | Leaf a
t1 = Node (Leaf 3) (Leaf 7)
t2 = Node (Leaf 3) (Leaf 5)
comp〈Tree Int〉 :: Tree Int → Tree Int → Ordering
comp〈Tree〉 :: ∀a.(a → a → Ordering) → (Tree a → Tree a → Ordering)
comp〈Tree Int〉 t1 t2 GT
comp〈Tree〉 (λx y → EQ) t1 t2 EQ

Type application, abstraction, and recursion are interpreted as
application, abstraction and recursion on the value level. For
instance:

comp〈Tree Int〉 ≡ comp〈Tree〉 (comp〈Int〉)

The virtue of having kind-indexed types
The generic function can be used on types of different kinds:

data Tree a = Node (Tree a) (Tree a) | Leaf a
t1 = Node (Leaf 3) (Leaf 7)
t2 = Node (Leaf 3) (Leaf 5)
comp〈Tree Int〉 :: Tree Int → Tree Int → Ordering
comp〈Tree〉 :: ∀a.(a → a → Ordering) → (Tree a → Tree a → Ordering)
comp〈Tree Int〉 t1 t2 GT
comp〈Tree〉 (λx y → EQ) t1 t2 EQ

Type application, abstraction, and recursion are interpreted as
application, abstraction and recursion on the value level. For
instance:

comp〈Tree Int〉 ≡ comp〈Tree〉 (comp〈Int〉)

Generic functions defined in this setting can be applied to type
constructors of all kinds, to mutually recursive and nested
datatypes!

(→)

A modified comparison function
Suppose we want to define a modified comparison function lcomp
that implements efficient comparison of lists:

➙ first compare the lengths of the lists; only if they are equal,
continue normally.

(→)

A modified comparison function
Suppose we want to define a modified comparison function lcomp
that implements efficient comparison of lists:

➙ first compare the lengths of the lists; only if they are equal,
continue normally.

All cases would be as for comp. In addition, there is one special case
for the list type constructor []:

lcomp〈[]〉 lcompa as1 as2 =
case compare (length as1) (length as2) of

EQ → compa as1 as2
r → r

We need to refer to compa but the catamorphic structure of the
function definitions only gives us access to lcompa!

(→)

A modified comparison function
Suppose we want to define a modified comparison function lcomp
that implements efficient comparison of lists:

➙ first compare the lengths of the lists; only if they are equal,
continue normally.

All cases would be as for comp. In addition, there is one special case
for the list type constructor []:

lcomp〈[]〉 lcompa as1 as2 =
case compare (length as1) (length as2) of

EQ → compa as1 as2
r → r

We need to refer to compa but the catamorphic structure of the
function definitions only gives us access to lcompa!

If a generic function depends on other generic functions except
itself, then it is difficult to express that in Classic Generic Haskell.

A workaround

One can tuple the function lcomp with comp:

type TComp〈〈?〉〉 t = (t → t → Ordering, t → t → Ordering)
type TComp〈〈κ → κ′〉〉 t = ∀a.TComp〈〈κ〉〉 a → TComp〈〈κ′〉〉 (t a)
tcomp〈t ::κ〉 :: TComp〈〈κ〉〉 t
. . .
tcomp〈[]〉 (lcompa, compa) =

(λas1 as2 → case compare (length as1) (length as2) of
EQ → compa as1 as2
r → r

, comp〈List〉
)

Disadvantages of this approach:
➙ different aspects (different functions) become intertwined
➙ the definition is hard to read and complicated
➙ it does not scale well if more than two functions or mutually

recursive functions are involved

Goal of Dependency-style Generic Haskell

We would like to write lcomp like this:

lcomp〈Unit〉 Unit Unit = EQ
lcomp〈Sum δa δb〉 (Inl a1) (Inl a2) = lcomp〈δa〉 a1 a2
lcomp〈Sum δa δb〉 (Inl) (Inr) = LT
lcomp〈Sum δa δb〉 (Inr) (Inl) = GT
lcomp〈Sum δa δb〉 (Inr b1) (Inr b2) = lcomp〈δb〉 b1 b2
lcomp〈Prod δa δb〉 (a1 , b1) (a2 , b2) = case lcomp〈δa〉 a1 a2 of

EQ → lcomp〈δb〉 b1 b2
r → r

lcomp〈Int〉 i1 i2 = compare i1 i2
lcomp〈[δa]〉 as1 as2 = case compare (length as1) (length as2) of

EQ → comp〈δa〉 as1 as2
r → r

(Type variables with δ are scoped over one case of the generic
definition – we call them dependency variables.)

Goal of Dependency-style Generic Haskell

We would like to write lcomp like this:

lcomp〈δa〉 extends comp〈δa〉
lcomp〈[δa]〉 as1 as2 = case compare (length as1) (length as2) of

EQ → comp〈δa〉 as1 as2
r → r

(Type variables with δ are scoped over one case of the generic
definition – we call them dependency variables.)

Goal of Dependency-style Generic Haskell

We would like to write lcomp like this:

lcomp〈δa〉 extends comp〈δa〉
lcomp〈[δa]〉 as1 as2 = case compare (length as1) (length as2) of

EQ → comp〈δa〉 as1 as2
r → r

(Type variables with δ are scoped over one case of the generic
definition – we call them dependency variables.)

Have the better syntax using recursion explicitly,
but keep all advantages of Classic Generic Haskell.

Dependency-style Generic Haskell

➙ The type patterns in the cases are now type constructors
applied to dependency variables (Sum δa δb instead of Sum).

➙ Explicit dictionaries are replaced by implicit dictionaries.
➙ The implicit dictionaries can not only hold the function that is

defined, but other functions.
➙ These dependencies of one generic function on other generic

functions are recorded in the types.

Explicit recursion, implicit dictionaries

comp〈Unit〉 Unit Unit = EQ
comp〈Sum〉 compa compb (Inl a1) (Inl a2) = compa a1 a2
comp〈Sum〉 compa compb (Inl) (Inr) = LT
comp〈Sum〉 compa compb (Inr) (Inl) = GT
comp〈Sum〉 compa compb (Inr b1) (Inr b2) = compb b1 b2
comp〈Prod〉 compa compb (a1 , b1) (a2 , b2) =

case compa a1 a2 of
EQ → compb b1 b2
r → r

comp〈Int〉 i1 i2 = compare i1 i2

Explicit recursion, implicit dictionaries

comp〈Unit〉 Unit Unit = EQ
comp〈Sum〉 comp〈δa〉 comp〈δb〉 (Inl a1) (Inl a2) = comp〈δa〉 a1 a2
comp〈Sum〉 comp〈δa〉 comp〈δb〉 (Inl) (Inr) = LT
comp〈Sum〉 comp〈δa〉 comp〈δb〉 (Inr) (Inl) = GT
comp〈Sum〉 comp〈δa〉 comp〈δb〉 (Inr b1) (Inr b2) = comp〈δb〉 b1 b2
comp〈Prod〉 comp〈δa〉 comp〈δb〉 (a1 , b1) (a2 , b2) =

case comp〈δa〉 a1 a2 of
EQ → comp〈δb〉 b1 b2
r → r

comp〈Int〉 i1 i2 = compare i1 i2

We rename the dictionary arguments.

Explicit recursion, implicit dictionaries

comp〈Unit〉 Unit Unit = EQ
comp〈Sum δa δb〉 comp〈δa〉 comp〈δb〉 (Inl a1) (Inl a2) = comp〈δa〉 a1 a2
comp〈Sum δa δb〉 comp〈δa〉 comp〈δb〉 (Inl) (Inr) = LT
comp〈Sum δa δb〉 comp〈δa〉 comp〈δb〉 (Inr) (Inl) = GT
comp〈Sum δa δb〉 comp〈δa〉 comp〈δb〉 (Inr b1) (Inr b2) = comp〈δb〉 b1 b2
comp〈Prod δa δb〉 comp〈δa〉 comp〈δb〉 (a1 , b1) (a2 , b2) =

case comp〈δa〉 a1 a2 of
EQ → comp〈δb〉 b1 b2
r → r

comp〈Int〉 i1 i2 = compare i1 i2

We add variables to the type arguments.

Explicit recursion, implicit dictionaries

comp〈Unit〉 Unit Unit = EQ
comp〈Sum δa δb〉 {- (. . .) implicit -} (Inl a1) (Inl a2) = comp〈δa〉 a1 a2
comp〈Sum δa δb〉 {- (. . .) implicit -} (Inl) (Inr) = LT
comp〈Sum δa δb〉 {- (. . .) implicit -} (Inr) (Inl) = GT
comp〈Sum δa δb〉 {- (. . .) implicit -} (Inr b1) (Inr b2) = comp〈δb〉 b1 b2
comp〈Prod δa δb〉 {- (. . .) implicit -} (a1 , b1) (a2 , b2) =

case comp〈δa〉 a1 a2 of
EQ → comp〈δb〉 b1 b2
r → r

comp〈Int〉 i1 i2 = compare i1 i2

We forget the dictionary arguments.
➙ This definition is in the desired format, but can be interpreted

in the same way as the Classic definition.
➙ Type arguments are type constructors, fully applied to

dependency variables.

What about the types?

The dependencies are recorded in the types.

comp〈Sum δa δb〉 (Inl a1) (Inl a2) = comp〈δa〉 a1 a2
comp〈Sum δa δb〉 (Inl) (Inr) = LT
comp〈Sum δa δb〉 (Inr) (Inl) = GT
comp〈Sum δa δb〉 (Inr b1) (Inr b2) = comp〈δb〉 b1 b2

For instance, the right hand sides of the sum case have this type:

∀a b.(comp〈δa〉 :: a → a → Ordering, comp〈δb〉 :: b → b → Ordering)
⇒ Sum a b → Sum a b → Ordering

Actually, these four types are instances of the type given above:

∀a b.(comp〈δa〉 :: a → a → Ordering) ⇒ Sum a b → Sum a b → Ordering
∀a b. Sum a b → Sum a b → Ordering
∀a b. Sum a b → Sum a b → Ordering
∀a b.(comp〈δb〉 :: b → b → Ordering) ⇒ Sum a b → Sum a b → Ordering

What about the types? – contd.
Dependencies are introduced whenever a type argument with one or
more dependency variables is used. For instance, comp〈δa〉:

comp〈δa〉 :: a → a → Ordering

What about the types? – contd.
Dependencies are introduced whenever a type argument with one or
more dependency variables is used. For instance, comp〈δa〉:

comp〈δa〉 :: (comp〈δa〉 :: a → a → Ordering) ⇒ a → a → Ordering

What about the types? – contd.
Dependencies are introduced whenever a type argument with one or
more dependency variables is used. For instance, comp〈δa〉:

comp〈δa〉 :: (comp〈δa〉 :: a → a → Ordering) ⇒ a → a → Ordering

It turns out that this type contains sufficient type information for the
generic function:

(comp〈δa〉 :: a → a → Ordering) ⇒ a → a → Ordering

What about the types? – contd.
Dependencies are introduced whenever a type argument with one or
more dependency variables is used. For instance, comp〈δa〉:

comp〈δa〉 :: (comp〈δa〉 :: a → a → Ordering) ⇒ a → a → Ordering

It turns out that this type contains sufficient type information for the
generic function:

〈δa〉 a 7→
(comp〈δa〉 :: a → a → Ordering) ⇒ a → a → Ordering

What about the types? – contd.
Dependencies are introduced whenever a type argument with one or
more dependency variables is used. For instance, comp〈δa〉:

comp〈δa〉 :: (comp〈δa〉 :: a → a → Ordering) ⇒ a → a → Ordering

It turns out that this type contains sufficient type information for the
generic function:

comp〈t〉 :: (generalize 〈δa〉 a 7→
(comp〈δa〉 :: a → a → Ordering) ⇒ a → a → Ordering) t

What about the types? – contd.
Dependencies are introduced whenever a type argument with one or
more dependency variables is used. For instance, comp〈δa〉:

comp〈δa〉 :: (comp〈δa〉 :: a → a → Ordering) ⇒ a → a → Ordering

It turns out that this type contains sufficient type information for the
generic function:

comp〈t〉 :: (generalize 〈δa〉 a 7→
(comp〈δa〉 :: a → a → Ordering) ⇒ a → a → Ordering) t

From this type signature, the following types can be computed
automatically:

comp〈[Int]〉 :: [Int] → [Int] → Ordering
comp〈[δa]〉 :: (comp〈δa〉 :: a → a → Ordering)

⇒ [a] → [a] → Ordering
comp〈Sum δa δb〉 :: (comp〈δa〉 :: a → a → Ordering

, comp〈δb〉 :: b → b → Ordering)
⇒ Sum a b → Sum a b → Ordering

Using dependency-style functions

➙ The call comp〈Int〉 refers to the case for Int in the definition.
➙ In Classic Generic Haskell, comp〈Tree〉 expects an extra

argument. The call comp〈Tree Int〉 is the same as
comp〈Tree〉 (comp〈Int〉).

Using dependency-style functions

➙ The call comp〈Int〉 refers to the case for Int in the definition.
➙ In Classic Generic Haskell, comp〈Tree〉 expects an extra

argument. The call comp〈Tree Int〉 is the same as
comp〈Tree〉 (comp〈Int〉).

➙ Now, comp〈Tree δa〉 has a dependency on
comp〈δa〉 :: a → a → Ordering. This dependency can be satisfied
in a special let-binding:

comp〈Tree δa〉 (Node (Leaf 3) (Leaf 7)) (Node (Leaf 3) (Leaf 5))

Using dependency-style functions

➙ The call comp〈Int〉 refers to the case for Int in the definition.
➙ In Classic Generic Haskell, comp〈Tree〉 expects an extra

argument. The call comp〈Tree Int〉 is the same as
comp〈Tree〉 (comp〈Int〉).

➙ Now, comp〈Tree δa〉 has a dependency on
comp〈δa〉 :: a → a → Ordering. This dependency can be satisfied
in a special let-binding:

comp〈δa〉
comp〈Tree δa〉 (Node (Leaf 3) (Leaf 7)) (Node (Leaf 3) (Leaf 5))

Using dependency-style functions

➙ The call comp〈Int〉 refers to the case for Int in the definition.
➙ In Classic Generic Haskell, comp〈Tree〉 expects an extra

argument. The call comp〈Tree Int〉 is the same as
comp〈Tree〉 (comp〈Int〉).

➙ Now, comp〈Tree δa〉 has a dependency on
comp〈δa〉 :: a → a → Ordering. This dependency can be satisfied
in a special let-binding:

deplet comp〈δa〉 = (λx y → EQ) in
comp〈Tree δa〉 (Node (Leaf 3) (Leaf 7)) (Node (Leaf 3) (Leaf 5))

Using dependency-style functions

➙ The call comp〈Int〉 refers to the case for Int in the definition.
➙ In Classic Generic Haskell, comp〈Tree〉 expects an extra

argument. The call comp〈Tree Int〉 is the same as
comp〈Tree〉 (comp〈Int〉).

➙ Now, comp〈Tree δa〉 has a dependency on
comp〈δa〉 :: a → a → Ordering. This dependency can be satisfied
in a special let-binding:

deplet comp〈δa〉 = (λx y → EQ) in
comp〈Tree δa〉 (Node (Leaf 3) (Leaf 7)) (Node (Leaf 3) (Leaf 5))
 EQ

Using dependency-style functions

➙ The call comp〈Int〉 refers to the case for Int in the definition.
➙ In Classic Generic Haskell, comp〈Tree〉 expects an extra

argument. The call comp〈Tree Int〉 is the same as
comp〈Tree〉 (comp〈Int〉).

➙ Now, comp〈Tree δa〉 has a dependency on
comp〈δa〉 :: a → a → Ordering. This dependency can be satisfied
in a special let-binding:

deplet comp〈δa〉 = (λx y → EQ) in
comp〈Tree δa〉 (Node (Leaf 3) (Leaf 7)) (Node (Leaf 3) (Leaf 5))
 EQ

➙ The call comp〈Tree Int〉 now is the same as

deplet comp〈δa〉 = comp〈Int〉 in comp〈Tree δa〉

Multiple dependencies
The function lcomp (with the special case for lists) depends on both
lcomp and comp:

lcomp〈Prod δa δb〉 (a1 , b1) (a2 , b2) = case lcomp〈δa〉 a1 a2 of
EQ → lcomp〈δb〉 b1 b2
r → r

. . .
lcomp〈[δa]〉 as1 as2 = case compare (length as1) (length as2) of

EQ → comp〈δa〉 as1 as2
r → r

Multiple dependencies
The function lcomp (with the special case for lists) depends on both
lcomp and comp:

lcomp〈Prod δa δb〉 (a1 , b1) (a2 , b2) = case lcomp〈δa〉 a1 a2 of
EQ → lcomp〈δb〉 b1 b2
r → r

. . .
lcomp〈[δa]〉 as1 as2 = case compare (length as1) (length as2) of

EQ → comp〈δa〉 as1 as2
r → r

lcomp〈t〉 :: (generalize 〈δa〉 a 7→
(comp〈δa〉 :: a → a → Ordering
, lcomp〈δa〉 :: a → a → Ordering) ⇒ a → a → Ordering) t

Multiple dependencies
The function lcomp (with the special case for lists) depends on both
lcomp and comp:

lcomp〈Prod δa δb〉 (a1 , b1) (a2 , b2) = case lcomp〈δa〉 a1 a2 of
EQ → lcomp〈δb〉 b1 b2
r → r

. . .
lcomp〈[δa]〉 as1 as2 = case compare (length as1) (length as2) of

EQ → comp〈δa〉 as1 as2
r → r

lcomp〈t〉 :: (generalize 〈δa〉 a 7→
(comp〈δa〉 :: a → a → Ordering
, lcomp〈δa〉 :: a → a → Ordering) ⇒ a → a → Ordering) t

lcomp〈Tree Int〉 ≡
deplet comp〈δa〉 = comp〈Int〉

lcomp〈δa〉 = lcomp〈Int〉
in lcomp〈Tree δa〉

Traversal example

data Compiler = C Name [Package Maintainer]
data Package a = P Name a [Feature] [Package a]
data Maintainer = M Name Affiliation

| Unmaintained
data Feature = F String
type Name = String
type Affiliation = String

Possible tasks:
➙ Check if something is maintained.
➙ Assign a new maintainer to a structure.
➙ Assign all unmaintained packages that implement generic

programming to me.

Check if something is maintained

data Compiler = C Name [Package Maintainer]
data Package a = P Name a [Feature] [Package a]
data Maintainer = M Name Affiliation

| Unmaintained
data Feature = F String
type Name = String
type Affiliation = String

unmaintained〈δa〉 extends crush〈δa〉 False (∨)
unmaintained〈Package δa〉 (P a) = unmaintained〈δa〉 a
unmaintained〈Maintainer〉 m = case m of Unmaintained → True

→ False

Check if something is maintained

data Compiler = C Name [Package Maintainer]
data Package a = P Name a [Feature] [Package a]
data Maintainer = M Name Affiliation

| Unmaintained
data Feature = F String
type Name = String
type Affiliation = String

unmaintained〈δa〉 extends crush〈δa〉 False (∨)
unmaintained〈Package δa〉 (P a) = unmaintained〈δa〉 a
unmaintained〈Maintainer〉 m = case m of Unmaintained → True

→ False

unmaintained〈t〉 :: (generalize 〈δa〉 a 7→
(unmaintained〈δa〉 :: a → Bool) ⇒ a → Bool) t

crush〈t〉 :: ∀b.(generalize 〈δa〉 a 7→
(crush〈δa〉 :: b → (b → b → b) → a → b) ⇒ b → (b → b → b) → a → b) t

Assign a new maintainer to a structure

data Compiler = C Name [Package Maintainer]
data Package a = P Name a [Feature] [Package a]
data Maintainer = M Name Affiliation

| Unmaintained
data Feature = F String
type Name = String
type Affiliation = String

assign〈δa〉 m extends id〈δa〉
assign〈Package δa〉 (P name a fts pkgs) = P name (assign〈δa〉 a) fts pkgs
assign〈Maintainer〉 = m

Assign a new maintainer to a structure

data Compiler = C Name [Package Maintainer]
data Package a = P Name a [Feature] [Package a]
data Maintainer = M Name Affiliation

| Unmaintained
data Feature = F String
type Name = String
type Affiliation = String

assign〈δa〉 m extends id〈δa〉
assign〈Package δa〉 (P name a fts pkgs) = P name (assign〈δa〉 a) fts pkgs
assign〈Maintainer〉 = m

assign〈t〉 :: (generalize 〈δa〉 a 7→ (assign〈δa〉 :: a → a) ⇒ a → a) t
id〈t〉 :: (generalize 〈δa〉 a 7→ (id〈δa〉 :: a → a) ⇒ a → a) t

(→)

Reassign suitable packages to me

gpreassign〈δa〉 extends id〈δa〉
gpreassign〈Package δa〉 p@(P name a fts pkgs)

| "generic programming" ∈ fts ∧ unmaintained〈Package δa〉
= assign〈Package δa〉 (M "Andres" "UU") p′

| otherwise = p′

where p′ = P name a fts (gpreassign〈[Package δa]〉 pkgs)

(→)

Reassign suitable packages to me

gpreassign〈δa〉 extends id〈δa〉
gpreassign〈Package δa〉 p@(P name a fts pkgs)

| "generic programming" ∈ fts ∧ unmaintained〈Package δa〉
= assign〈Package δa〉 (M "Andres" "UU") p′

| otherwise = p′

where p′ = P name a fts (gpreassign〈[Package δa]〉 pkgs)

This time, there are three dependencies:

gpreassign〈t〉 :: (generalize 〈δa〉 a 7→
(unmaintained〈δa〉 :: a → Bool
, assign〈δa〉 :: a → a
, gpreassign〈δa〉 :: a → a) ⇒ a → a) t

Summary of Dependency style

➙ In the definitions of generic functions, the type patterns now
are type construnctors applied to dependency variables.

➙ Calls to generic functions with type arguments containing
dependency variables now give rise to dependency constraints.

➙ Dependency constraints can be satisfied by means of a deplet
construct.

Comparison with type classes

➙ One function per class.
➙ Based on dependency variables.
➙ Dependency constraints can be locally instantiated.
➙ Type of the contraint varies with the kind of the variable;

constraints can be nested:
data Fix f = In f (Fix f)
comp〈Fix δf 〉 ::

Fix f → Fix f → Ordering

Comparison with type classes

➙ One function per class.
➙ Based on dependency variables.
➙ Dependency constraints can be locally instantiated.
➙ Type of the contraint varies with the kind of the variable;

constraints can be nested:
data Fix f = In f (Fix f)
comp〈Fix δf 〉 ::

(comp〈δf 〉::

f a → f a → Ordering)
⇒ Fix f → Fix f → Ordering

Comparison with type classes

➙ One function per class.
➙ Based on dependency variables.
➙ Dependency constraints can be locally instantiated.
➙ Type of the contraint varies with the kind of the variable;

constraints can be nested:
data Fix f = In f (Fix f)
comp〈Fix δf 〉 ::

(comp〈δf 〉::
(comp〈 〉 :: a → a → Ordering)
⇒ f a → f a → Ordering)

⇒ Fix f → Fix f → Ordering

Comparison with type classes

➙ One function per class.
➙ Based on dependency variables.
➙ Dependency constraints can be locally instantiated.
➙ Type of the contraint varies with the kind of the variable;

constraints can be nested:
data Fix f = In f (Fix f)
comp〈Fix δf 〉 ::

(comp〈δf δa〉::
(comp〈δa〉 :: a → a → Ordering)
⇒ f a → f a → Ordering)

⇒ Fix f → Fix f → Ordering

Conclusions

➙ Using Dependency-style Generic Haskell shifts programming
complexity from the programmer to the compiler; the
programmer can write functions in the more natural, “explicit”
style, with named type arguments.

➙ Using multiple, possibly mutually recursive generic functions
becomes possible.

➙ Nothing of the power of Classic Generic Haskell is lost.
➙ With Dependency-style syntax, it is easier to support even

more classes of generic functions:
– functions with higher base kind or nested type patterns

poly〈Λδa.δa〉 = . . .

generic〈[[δa]]〉 = . . .

– functions that involve type-indexed datatypes
➙ More future work: inferring the dependency constraints in the

declaration of a generic function automatically.

