Dependency-style Generic Haskell

Andres Löh, Dave Clarke, Johan Jeuring Universiteit Utrecht andres@cs.uu.nl

26th August 2003

Overview

- → Classic Generic Haskell
 - Generic programming in Classic Generic Haskell
 - The problem with Classic Generic Haskell
- → Solution: Dependency-style Generic Haskell
- ➔ Typing Dependency-style generic functions
- → Examples
 - Classic generic functions
 - Generic traversal
- → Comparison with type classes
- → Conclusions

Classic Generic Haskell

- Generic Haskell = Haskell + generic functions (+ generic datatypes)
- → generic = indexed by a type argument
- a generic function usually is defined inductively over the structure of datatypes
- → thus, generic functions work for all types in a generic way
- → Generic Haskell is implemented as a preprocessor that translates generic functions into Haskell
- → translation proceeds by specialisation
- the theory is based on Ralf Hinze's several papers about generic programming in Haskell
- typical generic functions are: mapping, ordering, (de)coding, (un)parsing, generic traversals, operations on type-indexed datatypes

Programming in Classic Generic Haskell

A generic comparison function looks as follows:

data Ordering = $LT \mid EQ \mid GT$ **type** $Comp(\langle \star \rangle)$ $t = t \rightarrow t \rightarrow Ordering$ **type** $Comp\langle\!\langle \kappa \to \kappa' \rangle\!\rangle t = \forall a. Comp\langle\!\langle \kappa \rangle\!\rangle a \to Comp\langle\!\langle \kappa' \rangle\!\rangle (t a)$ $comp\langle t :: \kappa \rangle :: Comp\langle\!\langle \kappa \rangle\!\rangle t$ comp(Unit) Unit Unit = EOcomp(Sum) $comp_a comp_b$ (Inl a_1) (Inl a_2) = $comp_a a_1 a_2$ $comp(Sum) comp_a comp_h (Inl_) (Inr_) = LT$ comp(Sum) $comp_a comp_b (Inr_) (Inl_) = GT$ $comp (Sum) comp_a comp_b (Inr b_1) (Inr b_2) = comp_b b_1 b_2$ $comp \langle Prod \rangle comp_a comp_b (a_1, b_1) (a_2, b_2) =$ case $comp_a a_1 a_2$ of $EQ \rightarrow comp_h b_1 b_2$ $r \rightarrow r$ comp(Int) i_1 i_2 = compare i_1 i_2

A closer look

A **kind-indexed type** (kind argument in $\langle\!\langle \cdot \rangle\!\rangle$):

type *Comp* $\langle\!\langle \star \rangle\!\rangle$ $t = t \rightarrow t \rightarrow Ordering$ The type of the function on normal (i.e. kind \star) type arguments.

type $Comp \langle\!\langle \kappa \to \kappa' \rangle\!\rangle t = \forall a. Comp \langle\!\langle \kappa \rangle\!\rangle a \to Comp \langle\!\langle \kappa' \rangle\!\rangle (t a)$

The type of the function on type constructors.

A closer look

A **kind-indexed type** (kind argument in $\langle\!\langle \cdot \rangle\!\rangle$):

type $Comp(\langle \star \rangle)$ $t = t \rightarrow t \rightarrow Ordering$ The type of the function on normal (i.e. kind \star) type arguments.

type $Comp\langle\!\langle \kappa \to \kappa' \rangle\!\rangle t = \forall a.Comp\langle\!\langle \kappa \rangle\!\rangle a \to Comp\langle\!\langle \kappa' \rangle\!\rangle (t a)$

The type of the function on type constructors.

A type signature:

 $comp\langle t :: \kappa \rangle :: Comp\langle\!\langle \kappa \rangle\!\rangle t$ The type is assigned to the function.

Multiple cases, for different type patterns (in $\langle \cdot \rangle$):

A closer look — contd.Multiple cases, for different type patterns (in $\langle \cdot \rangle$): $comp\langle Unit \rangle$ Unit</t

A closer look — contd.						
Multiple cases, for different type patterns (in $\langle \cdot \rangle$):						
$comp\langle Unit angle$	Unit	Unit	= EQ			
The one-element type <i>Unit</i> is defined as follows:						
data Unit = Unit						
$comp \langle Sum \rangle \ comp_a \ comp \langle Sum \rangle \ comp_a \ comp \langle Sum \rangle \ comp_a \ comp \langle Sum \rangle \ comp_a \ comp_a \ comp \langle Sum \rangle \ comp_a $	$comp_b$ (Inl $_$)	(Inr _) = LT	a ₂		

 $comp\langle Sum \rangle comp_a^{"} comp_b^{"} (Inr b_1) (Inr b_2) = comp_b b_1 b_2$

The type constructor Sum represents choice:

data Sum $a b = Inl a \mid Inr b$

- → *Sum* is a type constructor of kind $\star \rightarrow \star \rightarrow \star$
- → the cases for *Sum* get two comparison functions as arguments
- → the definition of *comp* is written as a **catamorphism**

```
\begin{array}{l} comp \langle Prod \rangle \ comp_a \ comp_b \ (a_1, b_1) \ (a_2, b_2) \ = \\ \mathbf{case} \ comp_a \ a_1 \ a_2 \ \mathbf{of} \\ EQ \rightarrow \ comp_b \ b_1 \ b_2 \\ r \ \ \rightarrow r \end{array}
```

The type *Prod a b* contains pairs of *a*'s and *b*'s:

data Prod a b = (a, b)

```
\begin{array}{l} comp \langle Prod \rangle \ comp_a \ comp_b \ (a_1, b_1) \ (a_2, b_2) = \\ \textbf{case} \ comp_a \ a_1 \ a_2 \ \textbf{of} \\ EQ \to comp_b \ b_1 \ b_2 \\ r \quad \rightarrow r \end{array}
```

The type *Prod a b* contains pairs of *a*'s and *b*'s:

data Prod a b = (a, b)

Haskell datatypes can be represented by isomorphic datatypes that are built from *Unit*, *Sum*, *Prod*, plus type application, abstraction and recursion, and a few primitive types, such as *Int*:

 $comp \langle Int \rangle$ i_1 i_2 = compare i_1 i_2 Here, compare denotes the standard comparison function defined in
the prelude.

```
\begin{array}{l} comp \langle Prod \rangle \ comp_a \ comp_b \ (a_1, b_1) \ (a_2, b_2) = \\ \textbf{case} \ comp_a \ a_1 \ a_2 \ \textbf{of} \\ EQ \to comp_b \ b_1 \ b_2 \\ r \quad \rightarrow r \end{array}
```

The type *Prod a b* contains pairs of *a*'s and *b*'s:

data Prod a b = (a, b)

Haskell datatypes can be represented by isomorphic datatypes that are built from *Unit*, *Sum*, *Prod*, plus type application, abstraction and recursion, and a few primitive types, such as *Int*:

 $comp \langle Int \rangle$ i_1 i_2 = compare i_1 i_2 Here, compare denotes the standard comparison function defined in
the prelude.

In this style of generic definition, the type patterns are always simple types or type constructors.

The virtue of having kind-indexed types

The generic function can be used on types of different kinds:

 $\begin{array}{l} \textbf{data Tree } a = \textit{Node (Tree a) (Tree a) | Leaf a} \\ t_1 = \textit{Node (Leaf 3) (Leaf 7)} \\ t_2 = \textit{Node (Leaf 3) (Leaf 5)} \\ \textit{comp} \langle \textit{Tree Int} \rangle :: \textit{Tree Int} \rightarrow \textit{Tree Int} \rightarrow \textit{Ordering} \\ \textit{comp} \langle \textit{Tree} \rangle & :: \forall a.(a \rightarrow a \rightarrow \textit{Ordering}) \rightarrow (\textit{Tree } a \rightarrow \textit{Tree } a \rightarrow \textit{Ordering}) \\ \textit{comp} \langle \textit{Tree Int} \rangle & t_1 t_2 \rightsquigarrow \textit{GT} \\ \textit{comp} \langle \textit{Tree} \rangle & (\lambda x \ y \rightarrow EQ) \ t_1 \ t_2 \rightsquigarrow EQ \end{array}$

The virtue of having kind-indexed types

The generic function can be used on types of different kinds:

 $\begin{array}{l} \textbf{data Tree } a = \textit{Node (Tree a) (Tree a) | Leaf a} \\ t_1 = \textit{Node (Leaf 3) (Leaf 7)} \\ t_2 = \textit{Node (Leaf 3) (Leaf 5)} \\ \textit{comp} \langle \textit{Tree Int} \rangle :: \textit{Tree Int} \rightarrow \textit{Tree Int} \rightarrow \textit{Ordering} \\ \textit{comp} \langle \textit{Tree} \rangle & :: \forall a.(a \rightarrow a \rightarrow \textit{Ordering}) \rightarrow (\textit{Tree } a \rightarrow \textit{Tree } a \rightarrow \textit{Ordering}) \\ \textit{comp} \langle \textit{Tree Int} \rangle & t_1 t_2 \rightsquigarrow \textit{GT} \\ \textit{comp} \langle \textit{Tree} \rangle & (\lambda x \ y \rightarrow EQ) \ t_1 \ t_2 \rightsquigarrow EQ \end{array}$

Type application, abstraction, and recursion are interpreted as application, abstraction and recursion on the value level. For instance:

 $comp\langle Tree \ Int \rangle \equiv comp\langle Tree \rangle \ (comp\langle Int \rangle)$

The virtue of having kind-indexed types

The generic function can be used on types of different kinds:

data Tree a = Node (Tree a) (Tree a) | Leaf a $t_1 = Node$ (Leaf 3) (Leaf 7) $t_2 = Node$ (Leaf 3) (Leaf 5) $comp\langle Tree Int \rangle :: Tree Int \rightarrow Tree Int \rightarrow Ordering$ $comp\langle Tree \rangle :: \forall a.(a \rightarrow a \rightarrow Ordering) \rightarrow (Tree a \rightarrow Tree a \rightarrow Ordering)$ $comp\langle Tree Int \rangle \qquad t_1 t_2 \rightsquigarrow GT$ $comp\langle Tree \rangle (\lambda x y \rightarrow EQ) t_1 t_2 \rightsquigarrow EQ$

Type application, abstraction, and recursion are interpreted as application, abstraction and recursion on the value level. For instance:

 $comp\langle Tree Int \rangle \equiv comp\langle Tree \rangle (comp\langle Int \rangle)$

Generic functions defined in this setting can be applied to type constructors of all kinds, to mutually recursive and nested datatypes!

A modified comparison function

Suppose we want to define a modified comparison function *lcomp* that implements efficient comparison of lists:

→ first compare the lengths of the lists; only if they are equal, continue normally.

A modified comparison function

Suppose we want to define a modified comparison function *lcomp* that implements efficient comparison of lists:

first compare the lengths of the lists; only if they are equal, continue normally.

All cases would be as for *comp*. In addition, there is one special case for the list type constructor []:

```
\begin{array}{l} lcomp\langle []\rangle \ lcomp_a \ as_1 \ as_2 = \\ \textbf{case} \ compare \ (length \ as_1) \ (length \ as_2) \ \textbf{of} \\ EQ \rightarrow \ comp_a \ as_1 \ as_2 \\ r \quad \rightarrow r \end{array}
```

We need to refer to $comp_a$ but the catamorphic structure of the function definitions only gives us access to $lcomp_a$!

A modified comparison function

Suppose we want to define a modified comparison function *lcomp* that implements efficient comparison of lists:

first compare the lengths of the lists; only if they are equal, continue normally.

All cases would be as for *comp*. In addition, there is one special case for the list type constructor []:

```
\begin{array}{l} lcomp\langle []\rangle \ lcomp_a \ as_1 \ as_2 = \\ \textbf{case} \ compare \ (length \ as_1) \ (length \ as_2) \ \textbf{of} \\ EQ \rightarrow \ comp_a \ as_1 \ as_2 \\ r \quad \rightarrow r \end{array}
```

We need to refer to $comp_a$ but the catamorphic structure of the function definitions only gives us access to $lcomp_a$!

If a generic function depends on other generic functions except itself, then it is difficult to express that in Classic Generic Haskell.

A workaround

One can tuple the function *lcomp* with *comp*:

```
\begin{array}{l} \textbf{type } TComp\langle\!\langle \star \rangle\!\rangle & t = (t \rightarrow t \rightarrow Ordering, t \rightarrow t \rightarrow Ordering) \\ \textbf{type } TComp\langle\!\langle \kappa \rightarrow \kappa' \rangle\!\rangle & t = \forall a. TComp\langle\!\langle \kappa \rangle\!\rangle & a \rightarrow TComp\langle\!\langle \kappa' \rangle\!\rangle & (t a) \\ tcomp\langle\!\langle t :: \kappa \rangle :: TComp\langle\!\langle \kappa \rangle\!\rangle & t \\ \dots \\ tcomp\langle\!\langle [] \rangle & (lcomp_a, comp_a) = \\ & (\lambda as_1 \ as_2 \rightarrow \textbf{case } compare \ (length \ as_1) \ (length \ as_2) \ \textbf{of} \\ & EQ \rightarrow comp_a \ as_1 \ as_2 \\ & r \quad \rightarrow r \\ & , comp\langle\!List\rangle \end{array}
```

Disadvantages of this approach:

- → different aspects (different functions) become intertwined
- → the definition is hard to read and complicated
- it does not scale well if more than two functions or mutually recursive functions are involved

Goal of Dependency-style Generic Haskell

We would like to write *lcomp* like this:

$$\begin{split} & |comp \langle Unit \rangle & Unit & Unit & = EQ \\ & |comp \langle Sum \, \delta a \, \delta b \rangle \, (Inl \, a_1) \, (Inl \, a_2) &= |comp \langle \delta a \rangle \, a_1 \, a_2 \\ & |comp \langle Sum \, \delta a \, \delta b \rangle \, (Inl \, _) \, (Inr \, _) &= LT \\ & |comp \langle Sum \, \delta a \, \delta b \rangle \, (Inr \, _) \, (Inl \, _) &= GT \\ & |comp \langle Sum \, \delta a \, \delta b \rangle \, (Inr \, b_1) \, (Inr \, b_2) &= |comp \langle \delta b \rangle \, b_1 \, b_2 \\ & |comp \langle Prod \, \delta a \, \delta b \rangle \, (a_1, b_1) \, (a_2, b_2) &= \mathbf{case} \, |comp \langle \delta a \rangle \, a_1 \, a_2 \, \mathbf{of} \\ & EQ \rightarrow |comp \langle \delta b \rangle \, b_1 \, b_2 \\ & r \quad \rightarrow r \\ & |comp \langle Int \rangle \quad i_1 \quad i_2 &= compare \, (i_1 \, i_2) \\ & |comp \langle [\delta a] \rangle \quad as_1 \quad as_2 &= \mathbf{case} \, compare \, (length \, as_1) \, (length \, as_2) \, \mathbf{of} \\ & EQ \rightarrow comp \langle \delta a \rangle \, as_1 \, as_2 \\ & r \quad \rightarrow r \end{split}$$

(Type variables with δ are **scoped** over one case of the generic definition – we call them **dependency variables**.)

Goal of Dependency-style Generic Haskell

We would like to write *lcomp* like this:

 $\begin{array}{ll} lcomp\langle \delta a \rangle \text{ extends } comp\langle \delta a \rangle \\ lcomp\langle [\delta a] \rangle & as_1 & as_2 \end{array} = \textbf{case } compare \ (length \ as_1) \ (length \ as_2) \ \textbf{of} \\ EQ \rightarrow comp\langle \delta a \rangle \ as_1 \ as_2 \\ r & \rightarrow r \end{array}$

(Type variables with δ are **scoped** over one case of the generic definition – we call them **dependency variables**.)

Goal of Dependency-style Generic Haskell

We would like to write *lcomp* like this:

 $\begin{array}{ll} lcomp\langle \delta a \rangle \text{ extends } comp\langle \delta a \rangle \\ lcomp\langle [\delta a] \rangle & as_1 & as_2 \end{array} = \textbf{case } compare \ (length \ as_1) \ (length \ as_2) \ \textbf{of} \\ EQ \to comp\langle \delta a \rangle \ as_1 \ as_2 \\ r & \to r \end{array}$

(Type variables with δ are **scoped** over one case of the generic definition – we call them **dependency variables**.)

Have the better syntax using recursion explicitly, but keep all advantages of Classic Generic Haskell.

Dependency-style Generic Haskell

- The type patterns in the cases are now type constructors applied to dependency variables (*Sum δa δb* instead of *Sum*).
- → Explicit dictionaries are replaced by implicit dictionaries.
- The implicit dictionaries can not only hold the function that is defined, but other functions.
- These dependencies of one generic function on other generic functions are recorded in the types.

```
comp(Unit)
comp(Sum) comp_a comp_b
comp(Sum) comp_a comp_b
comp \langle Sum \rangle \qquad comp_a \ comp_b
comp(Sum) comp_a comp_b (Inr b_1) (Inr b_2) = comp_b b_1 b_2
comp \langle Prod \rangle comp_a \ comp_h (a_1, b_1) \ (a_2, b_2) =
  case comp<sub>a</sub> a_1 a_2 of
    EQ \rightarrow comp_h b_1 b_2
     r \rightarrow r
comp(Int)
```

Unit Unit = EO $(Inl a_1) (Inl a_2) = comp_a a_1 a_2$ $(Inl_{-})(Inr_{-}) = LT$ $(Inr_{-})(Inl_{-}) = GT$

 i_1 $i_2 = compare i_1 i_2$

Unit Unit = EOcomp(Unit)*comp*(*Sum*) $comp\langle \delta a \rangle comp\langle \delta b \rangle$ (Inl a_1) (Inl a_2) = $comp\langle \delta a \rangle a_1 a_2$ $comp \langle \delta a \rangle comp \langle \delta b \rangle (Inl_{-}) (Inr_{-}) = LT$ comp(Sum) $comp\langle \delta a \rangle comp\langle \delta b \rangle (Inr_{-}) (Inl_{-}) = GT$ *comp*(*Sum*) comp(Sum) $comp(\delta a) comp(\delta b) (Inr b_1) (Inr b_2) = comp(\delta b) b_1 b_2$ $comp\langle Prod \rangle$ $comp\langle \delta a \rangle comp\langle \delta b \rangle (a_1, b_1) (a_2, b_2) =$ case *comp* $\langle \delta a \rangle$ $a_1 a_2$ of $EQ \rightarrow comp \langle \delta b \rangle b_1 b_2$ $r \rightarrow r$ comp(Int) i_1 $i_2 = compare i_1 i_2$

We rename the dictionary arguments.

We add variables to the type arguments.

We forget the dictionary arguments.

- This definition is in the desired format, but can be interpreted in the same way as the Classic definition.
- Type arguments are type constructors, fully applied to dependency variables.

What about the types?

The dependencies are recorded in the types.

 $\begin{array}{l} comp \langle Sum \ \delta a \ \delta b \rangle \ (Inl \ a_1) \ (Inl \ a_2) = comp \langle \delta a \rangle \ a_1 \ a_2 \\ comp \langle Sum \ \delta a \ \delta b \rangle \ (Inl \ _) \ (Inr \ _) = LT \\ comp \langle Sum \ \delta a \ \delta b \rangle \ (Inr \ _) \ (Inl \ _) = GT \\ comp \langle Sum \ \delta a \ \delta b \rangle \ (Inr \ b_1) \ (Inr \ b_2) = comp \langle \delta b \rangle \ b_1 \ b_2 \end{array}$

For instance, the right hand sides of the sum case have this type:

 $\forall a \ b.(comp \langle \delta a \rangle :: a \to a \to Ordering, comp \langle \delta b \rangle :: b \to b \to Ordering)$ $\Rightarrow Sum \ a \ b \to Sum \ a \ b \to Ordering$

Actually, these four types are instances of the type given above:

 $\forall a \ b.(comp \langle \delta a \rangle :: a \to a \to Ordering) \Rightarrow Sum \ a \ b \to Sum \ a \ b \to Ordering$ $\forall a \ b. Sum \ a \ b \to Sum \ a \ b \to Ordering$ $\forall a \ b. Sum \ a \ b \to Sum \ a \ b \to Ordering$ $\forall a \ b.(comp \langle \delta b \rangle :: b \to b \to Ordering) \Rightarrow Sum \ a \ b \to Sum \ a \ b \to Ordering$ $\Rightarrow Sum \ a \ b \to Sum \ a \ b \to Ordering$

Dependencies are introduced whenever a type argument with one or more dependency variables is used. For instance, $comp \langle \delta a \rangle$:

 $comp\langle \delta a \rangle ::$

 $a \rightarrow a \rightarrow Ordering$

Dependencies are introduced whenever a type argument with one or more dependency variables is used. For instance, $comp \langle \delta a \rangle$:

 $comp \langle \delta a \rangle :: (comp \langle \delta a \rangle :: a \to a \to Ordering) \Rightarrow a \to a \to Ordering$

Dependencies are introduced whenever a type argument with one or more dependency variables is used. For instance, $comp \langle \delta a \rangle$:

 $comp \langle \delta a \rangle :: (comp \langle \delta a \rangle :: a \to a \to Ordering) \Rightarrow a \to a \to Ordering$

It turns out that this type contains sufficient type information for the generic function:

 $(comp \langle \delta a \rangle :: a \to a \to Ordering) \Rightarrow a \to a \to Ordering$

Dependencies are introduced whenever a type argument with one or more dependency variables is used. For instance, $comp \langle \delta a \rangle$:

 $comp \langle \delta a \rangle :: (comp \langle \delta a \rangle :: a \to a \to Ordering) \Rightarrow a \to a \to Ordering$

It turns out that this type contains sufficient type information for the generic function:

 $\frac{\langle \delta a \rangle \ a \mapsto}{(comp \langle \delta a \rangle :: a \to a \to Ordering)} \Rightarrow a \to a \to Ordering$

Dependencies are introduced whenever a type argument with one or more dependency variables is used. For instance, $comp \langle \delta a \rangle$:

 $comp\langle \delta a \rangle :: (comp\langle \delta a \rangle :: a \to a \to Ordering) \Rightarrow a \to a \to Ordering$

It turns out that this type contains sufficient type information for the generic function:

 $\begin{array}{l} comp\langle t\rangle :: (generalize \langle \delta a \rangle \ a \mapsto \\ (comp\langle \delta a \rangle :: a \to a \to Ordering) \Rightarrow a \to a \to Ordering) \ t\end{array}$

Dependencies are introduced whenever a type argument with one or more dependency variables is used. For instance, $comp \langle \delta a \rangle$:

 $comp\langle \delta a \rangle :: (comp\langle \delta a \rangle :: a \to a \to Ordering) \Rightarrow a \to a \to Ordering$

It turns out that this type contains sufficient type information for the generic function:

 $\begin{array}{l} comp\langle t\rangle :: (\textbf{generalize} \langle \delta a \rangle \ a \mapsto \\ (comp\langle \delta a \rangle :: a \to a \to Ordering) \Rightarrow a \to a \to Ordering) \ t \end{array}$

From this type signature, the following types can be computed automatically:

 $\begin{array}{lll} comp\langle [Int] \rangle & :: & [Int] & \rightarrow [Int] & \rightarrow Ordering \\ comp\langle [\delta a] \rangle & :: (comp\langle \delta a \rangle :: a \rightarrow a \rightarrow Ordering) \\ & \Rightarrow [a] & \rightarrow [a] & \rightarrow Ordering \\ comp\langle Sum \ \delta a \ \delta b \rangle :: (comp\langle \delta a \rangle :: a \rightarrow a \rightarrow Ordering \\ & , comp\langle \delta b \rangle :: b \rightarrow b \rightarrow Ordering) \\ & \Rightarrow Sum \ a \ b \rightarrow Sum \ a \ b \rightarrow Ordering \end{array}$

Using dependency-style functions

- → The call *comp* $\langle Int \rangle$ refers to the case for *Int* in the definition.
- → In Classic Generic Haskell, comp (Tree) expects an extra argument. The call comp (Tree Int) is the same as comp (Tree) (comp (Int)).

Using dependency-style functions

- → The call *comp* $\langle Int \rangle$ refers to the case for *Int* in the definition.
- → In Classic Generic Haskell, comp⟨Tree⟩ expects an extra argument. The call comp⟨Tree Int⟩ is the same as comp⟨Tree⟩ (comp⟨Int⟩).
- Now, comp⟨Tree δa⟩ has a dependency on comp⟨δa⟩ :: a → a → Ordering. This dependency can be satisfied in a special let-binding:

 $comp\langle Tree \ \delta a \rangle \ (Node \ (Leaf \ 3) \ (Leaf \ 7)) \ (Node \ (Leaf \ 3) \ (Leaf \ 5))$

- → The call *comp* $\langle Int \rangle$ refers to the case for *Int* in the definition.
- → In Classic Generic Haskell, comp⟨Tree⟩ expects an extra argument. The call comp⟨Tree Int⟩ is the same as comp⟨Tree⟩ (comp⟨Int⟩).
- Now, comp⟨Tree δa⟩ has a dependency on comp⟨δa⟩ :: a → a → Ordering. This dependency can be satisfied in a special let-binding:

 $comp\langle \delta a \rangle$ $comp\langle Tree \ \delta a \rangle$ (Node (Leaf 3) (Leaf 7)) (Node (Leaf 3) (Leaf 5))

- → The call *comp* $\langle Int \rangle$ refers to the case for *Int* in the definition.
- → In Classic Generic Haskell, comp⟨Tree⟩ expects an extra argument. The call comp⟨Tree Int⟩ is the same as comp⟨Tree⟩ (comp⟨Int⟩).
- Now, comp⟨Tree δa⟩ has a dependency on comp⟨δa⟩ :: a → a → Ordering. This dependency can be satisfied in a special let-binding:

deplet $comp\langle \delta a \rangle = (\lambda x \ y \to EQ)$ in $comp\langle Tree \ \delta a \rangle$ (Node (Leaf 3) (Leaf 7)) (Node (Leaf 3) (Leaf 5))

- → The call *comp* $\langle Int \rangle$ refers to the case for *Int* in the definition.
- → In Classic Generic Haskell, comp (Tree) expects an extra argument. The call comp (Tree Int) is the same as comp (Tree) (comp (Int)).
- Now, comp⟨Tree δa⟩ has a dependency on comp⟨δa⟩ :: a → a → Ordering. This dependency can be satisfied in a special let-binding:

deplet $comp\langle \delta a \rangle = (\lambda x \ y \to EQ)$ **in** $comp\langle Tree \ \delta a \rangle$ (Node (Leaf 3) (Leaf 7)) (Node (Leaf 3) (Leaf 5)) $\rightsquigarrow EQ$

- → The call *comp* $\langle Int \rangle$ refers to the case for *Int* in the definition.
- → In Classic Generic Haskell, comp⟨Tree⟩ expects an extra argument. The call comp⟨Tree Int⟩ is the same as comp⟨Tree⟩ (comp⟨Int⟩).
- Now, comp⟨Tree δa⟩ has a dependency on comp⟨δa⟩ :: a → a → Ordering. This dependency can be satisfied in a special let-binding:

deplet $comp\langle \delta a \rangle = (\lambda x \ y \to EQ)$ **in** $comp\langle Tree \ \delta a \rangle$ (Node (Leaf 3) (Leaf 7)) (Node (Leaf 3) (Leaf 5)) $\rightsquigarrow EQ$

→ The call *comp* $\langle Tree Int \rangle$ now is the same as

deplet *comp* $\langle \delta a \rangle$ = *comp* $\langle Int \rangle$ **in** *comp* $\langle Tree \ \delta a \rangle$

Multiple dependencies

. . .

The function *lcomp* (with the special case for lists) depends on both *lcomp* and *comp*:

 $\begin{array}{ll} lcomp \langle Prod \ \delta a \ \delta b \rangle \ (a_1, b_1) \ (a_2, b_2) = \mathbf{case} \ lcomp \langle \delta a \rangle \ a_1 \ a_2 \ \mathbf{of} \\ EQ \rightarrow lcomp \langle \delta b \rangle \ b_1 \ b_2 \\ r \ \rightarrow r \end{array}$

 $\begin{array}{ll} lcomp\langle [\delta a] \rangle & as_1 & as_2 & = \textbf{case } compare \ (length \ as_1) \ (length \ as_2) \ \textbf{of} \\ & EQ \rightarrow comp\langle \delta a \rangle \ as_1 \ as_2 \\ & r & \rightarrow r \end{array}$

Multiple dependencies

. . .

The function *lcomp* (with the special case for lists) depends on both *lcomp* and *comp*:

 $\begin{array}{ll} lcomp \langle Prod \ \delta a \ \delta b \rangle \ (a_1, b_1) \ (a_2, b_2) = \mathbf{case} \ lcomp \langle \delta a \rangle \ a_1 \ a_2 \ \mathbf{of} \\ EQ \rightarrow lcomp \langle \delta b \rangle \ b_1 \ b_2 \\ r \ \rightarrow r \end{array}$

 $\begin{array}{ll} |comp\langle [\delta a]\rangle & as_1 & as_2 & = \textbf{case } compare \ (length \ as_1) \ (length \ as_2) \ \textbf{of} \\ & EQ \rightarrow comp\langle \delta a\rangle \ as_1 \ as_2 \\ & r & \rightarrow r \end{array}$

 $\begin{array}{l} lcomp\langle t \rangle :: (generalize \langle \delta a \rangle \ a \mapsto \\ (comp \langle \delta a \rangle :: a \to a \to Ordering \\ , lcomp \langle \delta a \rangle :: a \to a \to Ordering) \Rightarrow a \to a \to Ordering) \ t\end{array}$

Multiple dependencies

The function *lcomp* (with the special case for lists) depends on both *lcomp* and *comp*:

 $\begin{array}{ll} lcomp \langle Prod \ \delta a \ \delta b \rangle \ (a_1, b_1) \ (a_2, b_2) = \mathbf{case} \ lcomp \langle \delta a \rangle \ a_1 \ a_2 \ \mathbf{of} \\ EQ \rightarrow lcomp \langle \delta b \rangle \ b_1 \ b_2 \\ r \ \rightarrow r \end{array}$

 $\begin{array}{ll} |comp\langle [\delta a]\rangle & as_1 & as_2 & = \textbf{case } compare \ (length \ as_1) \ (length \ as_2) \ \textbf{of} \\ & EQ \rightarrow comp\langle \delta a\rangle \ as_1 \ as_2 \\ & r & \rightarrow r \end{array}$

```
\begin{array}{l} lcomp\langle t\rangle :: (generalize \langle \delta a \rangle \ a \mapsto \\ (comp\langle \delta a \rangle :: a \to a \to Ordering \\ , lcomp\langle \delta a \rangle :: a \to a \to Ordering) \Rightarrow a \to a \to Ordering) \ t\end{array}
```

 $lcomp \langle Tree Int \rangle \equiv$ $deplet comp \langle \delta a \rangle = comp \langle Int \rangle$ $lcomp \langle \delta a \rangle = lcomp \langle Int \rangle$ $in lcomp \langle Tree \delta a \rangle$

. . .

Traversal example

data Compiler= C Name [Package Maintainer]data Package a= P Name a [Feature] [Package a]data Maintainer= M Name Affiliation| Unmaintaineddata Feature= F Stringtype Name= Stringtype Affiliation= String

Possible tasks:

- → Check if something is maintained.
- → Assign a new maintainer to a structure.
- Assign all unmaintained packages that implement generic programming to me.

Check if something is maintained

data Compiler= C Name [Package Maintainer]data Package a= P Name a [Feature] [Package a]data Maintainer= M Name Affiliation|Unmaintaineddata Feature= F Stringtype Name= Stringtype Affiliation= String

unmaintained $\langle \delta a \rangle$ extends $crush \langle \delta a \rangle$ False (\vee) unmaintained $\langle Package \ \delta a \rangle$ ($P _ a _ _$) = unmaintained $\langle \delta a \rangle$ a unmaintained $\langle Maintainer \rangle$ m = case m of Unmaintained \rightarrow True \rightarrow False

Check if something is maintained

data Compiler= C Name [Package Maintainer]data Package a= P Name a [Feature] [Package a]data Maintainer= M Name Affiliation| Unmaintaineddata Feature= F Stringtype Name= Stringtype Affiliation= String

unmaintained $\langle \delta a \rangle$ extends crush $\langle \delta a \rangle$ False (\vee) unmaintained $\langle Package \ \delta a \rangle$ ($P _ a _ _$) = unmaintained $\langle \delta a \rangle$ a unmaintained $\langle Maintainer \rangle$ m = case m of Unmaintained \rightarrow True \rightarrow False

 $\begin{array}{l} unmaintained \langle t \rangle :: (generalize \langle \delta a \rangle a \mapsto \\ (unmaintained \langle \delta a \rangle :: a \to Bool \qquad) \Rightarrow a \to Bool \qquad) t \\ crush \langle t \rangle :: \forall b. (generalize \langle \delta a \rangle a \mapsto \\ (crush \langle \delta a \rangle :: b \to (b \to b \to b) \to a \to b) \Rightarrow b \to (b \to b \to b) \to a \to b) t \end{array}$

Assign a new maintainer to a structure

data Compiler= C Name [Package Maintainer]data Package a= P Name a [Feature] [Package a]data Maintainer= M Name Affiliation| Unmaintaineddata Feature= F Stringtype Name= Stringtype Affiliation= String

assign $\langle \delta a \rangle$ m extends $id \langle \delta a \rangle$ assign $\langle Package \ \delta a \rangle$ (P name a fts pkgs) = P name (assign $\langle \delta a \rangle$ a) fts pkgs assign $\langle Maintainer \rangle_{-}$ = m

Assign a new maintainer to a structure

data Compiler= C Name [Package Maintainer]data Package a= P Name a [Feature] [Package a]data Maintainer= M Name Affiliation| Unmaintaineddata Feature= F Stringtype Name= Stringtype Affiliation= String

assign $\langle \delta a \rangle$ m extends $id \langle \delta a \rangle$ assign $\langle Package \ \delta a \rangle$ (P name a fts pkgs) = P name (assign $\langle \delta a \rangle$ a) fts pkgs assign $\langle Maintainer \rangle_{-}$ = m

 $assign\langle t \rangle :: (generalize \langle \delta a \rangle a \mapsto (assign\langle \delta a \rangle :: a \to a) \Rightarrow a \to a) t$ $id\langle t \rangle :: (generalize \langle \delta a \rangle a \mapsto (id\langle \delta a \rangle :: a \to a) \Rightarrow a \to a) t$

Reassign suitable packages to me

```
gpreassign \langle \delta a \rangle \text{ extends } id \langle \delta a \rangle
gpreassign \langle Package \ \delta a \rangle p@(P name \ a \ fts \ pkgs)
| "generic \ programming" \in fts \land unmaintained \langle Package \ \delta a \rangle
= assign \langle Package \ \delta a \rangle (M "Andres" "UU") \ p'
| \ otherwise = p'
where \ p' = P \ name \ a \ fts \ (gpreassign \langle [Package \ \delta a] \rangle \ pkgs)
```

Reassign suitable packages to me

```
gpreassign \langle \delta a \rangle \text{ extends } id \langle \delta a \rangle
gpreassign \langle Package \ \delta a \rangle \ p@(P \ name \ a \ fts \ pkgs)
| "generic \ programming" \in fts \land unmaintained \langle Package \ \delta a \rangle
= assign \langle Package \ \delta a \rangle \ (M "Andres" "UU") \ p'
| \ otherwise = p'
where \ p' = P \ name \ a \ fts \ (gpreassign \langle [Package \ \delta a] \rangle \ pkgs)
```

This time, there are three dependencies:

```
gpreassign\langle t \rangle :: (generalize \langle \delta a \rangle a \mapsto \\ (unmaintained \langle \delta a \rangle :: a \to Bool \\ , assign \langle \delta a \rangle :: a \to a \\ , gpreassign \langle \delta a \rangle :: a \to a) \Rightarrow a \to a) t
```

Summary of Dependency style

- → In the definitions of generic functions, the type patterns now are type construnctors applied to dependency variables.
- Calls to generic functions with type arguments containing dependency variables now give rise to dependency constraints.
- Dependency constraints can be satisfied by means of a deplet construct.

- → One function per class.
- → Based on dependency variables.
- → Dependency constraints can be locally instantiated.
- → Type of the contraint varies with the kind of the variable; constraints can be nested:

data Fix f = In f (Fix f) $comp\langle Fix \delta f \rangle ::$

 $Fix f \rightarrow Fix f \rightarrow Ordering$

- → One function per class.
- → Based on dependency variables.
- → Dependency constraints can be locally instantiated.
- Type of the contraint varies with the kind of the variable; constraints can be nested:

data Fix f = In f (Fix f) $comp\langle Fix \, \delta f \rangle ::$ $(comp\langle \delta f \rangle)::$

 $\begin{array}{c} f \ a \to f \ a \to Ordering) \\ \Rightarrow Fix \ f \to Fix \ f \to Ordering \end{array}$

- → One function per class.
- → Based on dependency variables.
- → Dependency constraints can be locally instantiated.
- Type of the contraint varies with the kind of the variable; constraints can be nested:

data Fix f = In f (Fix f) $comp\langle Fix \, \delta f \rangle ::$ $(comp\langle \delta f \rangle :: a \to a \to Ordering)$ $\Rightarrow f a \to f a \to Ordering)$ $\Rightarrow Fix f \to Fix f \to Ordering$

- → One function per class.
- → Based on dependency variables.
- → Dependency constraints can be locally instantiated.
- Type of the contraint varies with the kind of the variable; constraints can be nested:

data Fix f = In f (Fix f) $comp\langle Fix \, \delta f \rangle ::$ $(comp\langle \delta f \, \delta a \rangle ::$ $(comp\langle \delta a \rangle :: a \to a \to Ordering)$ $\Rightarrow f a \to f a \to Ordering)$ $\Rightarrow Fix f \to Fix f \to Ordering$

Conclusions

- → Using Dependency-style Generic Haskell shifts programming complexity from the programmer to the compiler; the programmer can write functions in the more natural, "explicit" style, with named type arguments.
- Using multiple, possibly mutually recursive generic functions becomes possible.
- → Nothing of the power of Classic Generic Haskell is lost.
- With Dependency-style syntax, it is easier to support even more classes of generic functions:
 - functions with higher base kind or nested type patterns

 $poly\langle \Lambda \delta a. \delta a \rangle = \dots$ $generic \langle [[\delta a]] \rangle = \dots$

- functions that involve type-indexed datatypes
- More future work: inferring the dependency constraints in the declaration of a generic function automatically.