
Haskell for EDSLs

Andres Löh

Utrecht University
andres@cs.uu.nl

Well-Typed, LLP
andres@well-typed.com

Capgemini
October 18, 2010



About me

I studied mathematics in Konstanz, Germany

I PhD in computer science in Utrecht 2004

I postdocs in Tallinn, Freiburg and Bonn

I UD at Utrecht University from 2007 until now

I as of now, partner at Well-Typed LLP, a company of Haskell
consultants



Me and Haskell

I started using Haskell in 1996

I my main research interests are related to Haskell: datatype
generic programming, advanced type systems, domain-specific
languages

I have been teaching “Advanced Functional Programming” three
times to master students, and “Applied Functional
Programming” twice as a summer school





Haskell

I Is a standardized language.

I Designed by committee, actually designed by the community.

I First version 1990.

I Usable, stable version: Haskell 1998.

I Current standard: Haskell 2010.

I Main implementation: GHC (Glasgow Haskell Compiler),
developed at Microsoft Research in Cambridge.

I Several other implementations: Utrecht Haskell Compiler,
Clean now has a Haskell frontend, YHC, JHC, LHC, Hugs, . . .



Strengths of Haskell

I Language.

I Community.



Language



Datatypes

It is very easy to define your own datatypes in Haskell:

The structure of a company

data Company = C [Dept]
data Dept = D Name Manager [Either Employee Dept]
data Employee = E Person Salary
data Person = P Name Address
data Salary = S Int
type Manager = Employee
type Name = String
type Address = String

A leaf-labelled binary tree

data Tree a = Node (Tree a) (Tree a)
| Leaf a



Datatypes

It is very easy to define your own datatypes in Haskell:

The structure of a company

data Company = C [Dept]
data Dept = D Name Manager [Either Employee Dept]
data Employee = E Person Salary
data Person = P Name Address
data Salary = S Int
type Manager = Employee
type Name = String
type Address = String

A leaf-labelled binary tree

data Tree a = Node (Tree a) (Tree a)
| Leaf a



Pattern matching

Functions on user-defined datatypes can be defined using pattern
matching:

The height of a tree

height :: Tree a→ Int
height (Leaf x) = 0
height (Node l r) = 1 + max (height l) (height r)



Polymorphism

The height of a tree

height :: Tree a→ Int
height (Leaf x) = 0
height (Node l r) = 1 + max (height l) (height r)

I The function works for all trees, regardless of label type.

I From looking at the type, we are guaranteed that the function
does not touch the labels of the trees!



Polymorphism

The height of a tree

height :: Tree a→ Int
height (Leaf x) = 0
height (Node l r) = 1 + max (height l) (height r)

I The function works for all trees, regardless of label type.

I From looking at the type, we are guaranteed that the function
does not touch the labels of the trees!



Type inference

The height of a tree

height :: Tree a→ Int
height (Leaf x) = 0
height (Node l r) = 1 + max (height l) (height r)

I Type signatures such as for height are optional! The compiler
can infer them.

I The compiler can infer quite advanced types, including
overloaded operations:

[(= =), (6≡)] :: Eq a ⇒ [a→ a → Bool]
[(= =), (6≡), (<), (>)] :: Ord a⇒ [a→ a → Bool]
[(= =), (6≡), (<), (>), (∧)] :: [Bool→ Bool→ Bool]



Type inference

The height of a tree

height :: Tree a→ Int
height (Leaf x) = 0
height (Node l r) = 1 + max (height l) (height r)

I Type signatures such as for height are optional! The compiler
can infer them.

I The compiler can infer quite advanced types, including
overloaded operations:

[(= =), (6≡)] :: Eq a ⇒ [a→ a → Bool]
[(= =), (6≡), (<), (>)] :: Ord a⇒ [a→ a → Bool]
[(= =), (6≡), (<), (>), (∧)] :: [Bool→ Bool→ Bool]



Effects

Java

int add0 (int x, int y) {
return x + y;
}

int add1 (int x, int y) {
launch missiles (now);
return x + y;
}

Both functions have the same type!



Effects

Java

int add0 (int x, int y) {
return x + y;
}

int add1 (int x, int y) {
launch missiles (now);
return x + y;
}

Both functions have the same type!



Effects

Java

int add0 (int x, int y) {
return x + y;
}

int add1 (int x, int y) {
launch missiles (now);
return x + y;
}

Both functions have the same type!



Effects

Haskell

add0 :: Int→ Int→ Int
add0 x y = x + y

add1 :: Int→ Int→ IO Int
add1 x y = launch missiles>> return (x + y)

Effectful computations are tagged by the type system!



Effects

Haskell

add0 :: Int→ Int→ Int
add0 x y = x + y

add1 :: Int→ Int→ IO Int
add1 x y = launch missiles>> return (x + y)

Effectful computations are tagged by the type system!



Effects in Haskell’s types

We have rather fine-grained control about effects just by looking at
the types:

A some type, no effect
IO A IO, exceptions, random numbers, concurrency, . . .
Gen A random numbers only
ST s A mutable variables only
STM A software transactional memory log variables only
State s A (persistent) state only
Error A exceptions only
Signal A time-changing value

New effect types can be defined. Effects can be combined.



Purity

Being explicit about all effects is called purity.

Purity is one of the most special features of Haskell.

I We can see from the type what effects a function might have.

I If the result type is not tagged by an effect, we know the
function is a pure function in the mathematical sense.

I Keeping track of effects is great for optimizations,
guaranteeing program correctness and also testing.



Purity

Being explicit about all effects is called purity.

Purity is one of the most special features of Haskell.

I We can see from the type what effects a function might have.

I If the result type is not tagged by an effect, we know the
function is a pure function in the mathematical sense.

I Keeping track of effects is great for optimizations,
guaranteeing program correctness and also testing.



Laziness

In Haskell, we can define if then else as a function (if we want):

ifthenelse True thenPart elsePart = thenPart
ifthenelse False thenPart elsePart = elsePart

I The whole point of ifthenelse is to avoid executing one of the
parts.

I In a lazy language, arguments are evaluated on demand.

I Hence, in a lazy language, we can define our own control-flow
constructs (loops, case distinctions, iterators, coroutines, etc.)



Laziness

In Haskell, we can define if then else as a function (if we want):

ifthenelse True thenPart elsePart = thenPart
ifthenelse False thenPart elsePart = elsePart

I The whole point of ifthenelse is to avoid executing one of the
parts.

I In a lazy language, arguments are evaluated on demand.

I Hence, in a lazy language, we can define our own control-flow
constructs (loops, case distinctions, iterators, coroutines, etc.)



Interacting with C and other languages

No language today can be used in isolation.

I Haskell supports an FFI (foreign function interface) to import
functions from C and export functions, too.

I Haskell also provides libraries that translate between Haskell’s
and C’s data model in an efficient way, and handle the
different memory management models.

I The FFI has been used extensively to provide bindings for
various common C and C++ libraries to Haskell.

I Many of Haskell’s standard library functions are mapped to C
libraries.

I Other examples: OpenGL, Gtk, LLVM,
compression/codecs/cryptography, image formats, Berkeley
DB, Python, matlab, Chipmunk, OGRE, SDL, X11, BLAS, . . .



Community and infrastructure



Infrastructure

I Most libraries and software are open source.

I Most frequently used license: BSD.

I Core GHC team (2 developers, plus maintenance by
Well-Typed) is sponsored by Microsoft Research, but many
volunteers help.

I Many, many contributors for libraries.

Haskell Platform:

I An attempt to facilitate installation of a Haskell toolchain.
Supported on Windows, Linux, and Mac.

I Core set of packages.

I Release independently of GHC, once every 6 months.



Cabal and Hackage

Cabal:

I library to facilitate the building and distribution of Haskell
packages in a uniform format,

I handles dependencies with other Haskell packages,

I support for several Haskell compilers.

Hackage:

I a package repository for community-supplied Haskell libraries
and applications,

I about 2500 packages are on Hackage now,

I contributed by 628 developers,

I about 3 million total downloads; about 160K downloads per
month.



Cabal and Hackage

Cabal:

I library to facilitate the building and distribution of Haskell
packages in a uniform format,

I handles dependencies with other Haskell packages,

I support for several Haskell compilers.

Hackage:

I a package repository for community-supplied Haskell libraries
and applications,

I about 2500 packages are on Hackage now,

I contributed by 628 developers,

I about 3 million total downloads; about 160K downloads per
month.



Commercial use

Haskell is enjoying more and more commercial success:

I Galois, Inc in Portland, Oregon is a rapidly growing
award-winning company using Haskell exclusively

I Well-Typed LLP is a successful Haskell consultancy based in
Oxford with various clients

I The Industrial Haskell Group is a consortium of companies
using Haskell supporting Haskell development

I More companies are listed on the Haskell Wiki: for example,
Amgen, Standard Chartered, Deutsche Bank, Barclays
Capital, Facebook, Google, plus many smaller companies and
startups (for example: TypLAB/Silk in Amsterdam).

I For more information, see also the website of the “Commercial
Users of Functional Programming” conference.



Research use

I Haskell remains an active research language.

I The annual “International Conference on Functional
Programming” and “Haskell Symposium” see many
Haskell-related academic publications and talks.

I Haskell is still in development and gradually evolving.

I The Haskell standard tries to address the concerns of both the
research and the commercial users.

I Haskell inspires many other languages, but also remains rather
unique (purity).



Community

Haskell has an amazing, active, very helpful community.

I Friendly to beginners.

I Trying hard to improve the overall experience.

I Various media: Haskell Wiki, mailing lists, Reddit,
Stackoverflow, blogs/planet, IRC, . . .

I Events: Hackathons, Google Summer of Code, Haskell
Symposium, Haskell Implementors Workshop, . . .



(E)DSLs



Languages are everwhere

I Nearly every IT concept is based on a language (even if you
never see it).

I Nearly every IT tool is a compiler (translating one language
into another).



What is an (E)DSL?

I DSL = domain-specific language

I EDSL = embedded DSL

I in Haskell, we can easily define datatypes, higher-order
functions, control-flow constructs, operators, normal functions

I together, we can often simulate the appearance of other
languages within Haskell, or create special-purpose
domain-specific sublanguages that allow to specify problems
concisely



Example: SQL



Classical approach

Build SQL queries as strings.

Disadvantages

I leads to an ad-hoc, low-level, programming style

I no guarantee that the statement is syntactically correct

I even if it sometimes is correct, it may not always be

I potential security problems due to lack of escaping

I errors occur at run-time and are often hard to debug



Classical approach

Build SQL queries as strings.

Disadvantages

I leads to an ad-hoc, low-level, programming style

I no guarantee that the statement is syntactically correct

I even if it sometimes is correct, it may not always be

I potential security problems due to lack of escaping

I errors occur at run-time and are often hard to debug



Built-in language features

C# has LINQ (Language Integrated Query):

var query =
from cust in db.Customers
where cust.City = = "Utrecht"
select new {cust.CustomerID};

Much better

I SQL queries are written directly within the language

I properly syntax- and type-checked

I errors will be reported in terms of the programming language

I can be translated to various backends

I escaping can be handled once by the backend

I but: limited to whatever is provided by LINQ



Built-in language features

C# has LINQ (Language Integrated Query):

var query =
from cust in db.Customers
where cust.City = = "Utrecht"
select new {cust.CustomerID};

Much better

I SQL queries are written directly within the language

I properly syntax- and type-checked

I errors will be reported in terms of the programming language

I can be translated to various backends

I escaping can be handled once by the backend

I but: limited to whatever is provided by LINQ



HaskellDB

query =
do cust← table customers

restrict (cust ! city .= =. "Utrecht")
project (cust ! customerID)

Nearly perfect

I Same level of complexity as LINQ.

I You still get the syntax- and type-safety.

I Just a normal Haskell library.

I If you do not like the syntax, you can change it.

I If you need additional abstractions, you can define them.

I If you have another domain, you just define another library.

I Or even better, you use one already available on Hackage.



HaskellDB

query =
do cust← table customers

restrict (cust ! city .= =. "Utrecht")
project (cust ! customerID)

Nearly perfect

I Same level of complexity as LINQ.

I You still get the syntax- and type-safety.

I Just a normal Haskell library.

I If you do not like the syntax, you can change it.

I If you need additional abstractions, you can define them.

I If you have another domain, you just define another library.

I Or even better, you use one already available on Hackage.



Hackage and DSLs

There are a multitude of EDSLs available for Haskell:

I for defining grammars and parsers

I for pretty-printing abstract syntax

I for defining attribute grammars

I for specfying (unit) tests and program properties

I for drawing and composing 2D images (for example, OpenGL)

I for defining images and animations

I for composing and layouting GUIs (Gtk, wxWidgets, Qt, . . . )

I for writing JavaScript programs

I for defining music

I for concurrent orchestration

I for web development

I for specifying hardware layouts

I . . .



Example: QuickCheck

Example property

propInsertDelete :: a→ Stack a→ Bool
propInsertDelete x s = toList (delete x (insert x s)) = = toList s

I Properties of programs can be written as Haskell functions.

I QuickCheck is a library that can automatically generate test
cases and test these functions.

I All Haskell abstractions can be used in order to define
properties.

I Test cases are typechecked and serve as additional
documentation.



Example: QuickCheck

Example property

propInsertDelete :: a→ Stack a→ Bool
propInsertDelete x s = toList (delete x (insert x s)) = = toList s

I Properties of programs can be written as Haskell functions.

I QuickCheck is a library that can automatically generate test
cases and test these functions.

I All Haskell abstractions can be used in order to define
properties.

I Test cases are typechecked and serve as additional
documentation.



Example: (X)HTML

Example document

htmlPage content =
(header << ((thetitle<< "Testing forms")

+++ (script ! [thetype "text/javascript",
src "http://ajax.google..."]<< "")

+++ (script ! [thetype "text/javascript",
src massInputJSFile]<< "")

))
+++ (body << content)

I Haskell rather than HTML syntax.

I Immediate typechecking to the XHTML specification (no
improper nesting).

I Own abstractions possible: higher-level composition,
automatic escaping of entities, . . .



Example: (X)HTML

Example document

htmlPage content =
(header << ((thetitle<< "Testing forms")

+++ (script ! [thetype "text/javascript",
src "http://ajax.google..."]<< "")

+++ (script ! [thetype "text/javascript",
src massInputJSFile]<< "")

))
+++ (body << content)

I Haskell rather than HTML syntax.

I Immediate typechecking to the XHTML specification (no
improper nesting).

I Own abstractions possible: higher-level composition,
automatic escaping of entities, . . .



Example: parsers

Example parser

expr :: Parse Expr
expr = Let<$ keyword "let"<∗> decl<∗ keyword "in"<∗> expr

<|> operatorExpr

I Syntax inspired by (E)BNF.

I Own abstractions.

I Type safety.

I Advanced analyses possible.



Example: parsers

Example parser

expr :: Parse Expr
expr = Let<$ keyword "let"<∗> decl<∗ keyword "in"<∗> expr

<|> operatorExpr

I Syntax inspired by (E)BNF.

I Own abstractions.

I Type safety.

I Advanced analyses possible.



Example: Parallel programming

Example: parallel map over a list

parMap strat f = (‘using‘ parList strat) ◦map f

I We can apply strategies to existing functions in order to tell
Haskell how to parallelize them.

I Only two primitives needed: rpar and rseq. The former hints
that something should be computed in parallel, the latter
explicitly sequences two operations.



Example: Parallel programming

Example: parallel map over a list

parMap strat f = (‘using‘ parList strat) ◦map f

I We can apply strategies to existing functions in order to tell
Haskell how to parallelize them.

I Only two primitives needed: rpar and rseq. The former hints
that something should be computed in parallel, the latter
explicitly sequences two operations.



Example: datatype-generic programming

Traversal example

optimise :: Expr→ Expr
optimise = transform $
λx→ case x of

Neg (Val i)→ Val (negate i)
x → x

I Functions such as transform recursively traverse an arbitrary
data structure.

I We only write the interesting case. This is completely
type-safe and very robust to change.

I Datatype-genericity is a quite powerful concept, quite related
to MDE.



Example: datatype-generic programming

Traversal example

optimise :: Expr→ Expr
optimise = transform $
λx→ case x of

Neg (Val i)→ Val (negate i)
x → x

I Functions such as transform recursively traverse an arbitrary
data structure.

I We only write the interesting case. This is completely
type-safe and very robust to change.

I Datatype-genericity is a quite powerful concept, quite related
to MDE.



Conclusions

Haskell should be considered as an implementation language:

I Culture of relatively short, high-quality code.

I Rapid prototyping.

I Type safety, more modular, easier to test and maintain:

Potential disadvantages:

I Writing good Haskell code requires training.

I In particular when it comes to performance.

I Toolchain may have a less “professional feel” than for other PLs.

However:

I Purity is really worth it (compared to F#, Scala, OCaml).

I Competitive advantage.

I Many excellent Haskell programmers waiting to be hired.

I Haskell is more fun.



Conclusions

Haskell should be considered as an implementation language:

I Culture of relatively short, high-quality code.

I Rapid prototyping.

I Type safety, more modular, easier to test and maintain:

Potential disadvantages:

I Writing good Haskell code requires training.

I In particular when it comes to performance.

I Toolchain may have a less “professional feel” than for other PLs.

However:

I Purity is really worth it (compared to F#, Scala, OCaml).

I Competitive advantage.

I Many excellent Haskell programmers waiting to be hired.

I Haskell is more fun.



Conclusions

Haskell should be considered as an implementation language:

I Culture of relatively short, high-quality code.

I Rapid prototyping.

I Type safety, more modular, easier to test and maintain:

Potential disadvantages:

I Writing good Haskell code requires training.

I In particular when it comes to performance.

I Toolchain may have a less “professional feel” than for other PLs.

However:

I Purity is really worth it (compared to F#, Scala, OCaml).

I Competitive advantage.

I Many excellent Haskell programmers waiting to be hired.

I Haskell is more fun.



Questions?


	Language
	Community and infrastructure
	(E)DSLs
	Example: SQL
	Questions?

