Generalizing Generic Functions

Andres Loh

7 July 2004

@'%
N

Universiteit Utrecht

Motivation

Despite “dependency style” Generic Haskell, generic functions
have a number of restrictions:

» only one type argument

» no higher-order type-indexed functions

» only flat type patterns

» complicated types for generic functions of higher arity

» no inference of type arguments

N
Universiteit Utrecht ; =

N
U

Motivation

Despite “dependency style” Generic Haskell, generic functions
have a number of restrictions:

» only one type argument

» no higher-order type-indexed functions

» only flat type patterns

» complicated types for generic functions of higher arity

» no inference of type arguments

Not all of the restrictions pose difficult problems, but all of
them are “remaining work”.

N
Universiteit Utrecht ; =

N
U

Motivation

Despite “dependency style” Generic Haskell, generic functions
have a number of restrictions:

» only one type argument

» no higher-order type-indexed functions

» only flat type patterns

» complicated types for generic functions of higher arity

» no inference of type arguments

Not all of the restrictions pose difficult problems, but all of
them are “remaining work”.

Type classes (+extensions) solve many of these problems. Arjan
has shown how to encode “dependency style” using type
classes. RN

Universiteit Utrecht = b <

N
U

Getting Rid of Type Classes

Andres Loh

7 July 2004

&‘W%
N

Universiteit Utrecht

More motivation

There are many similarities between type classes and
type-indexed functions.
But type-indexed functions are better because:

» Type classes create a separate programming language on
top of Haskell.

» Type classes seem to have the need of several extensions to
acquire their full power.

» Type classes are not first-class either. They are “fixed”.

» Type classes force implicit passing of dictionaries.

N
Universiteit Utrecht ; =

N
U

Long-term goals

» Extend Haskell language with a type abstraction and type
application construct, and a typecase.

» Type-indexed types take the role of functional
dependencies.

» Type system and translation are similar to “dependency
style” and type classes: use of qualified types, dictionary
passing.

» Type arguments can be inferred in special cases.

» Type arguments can always be specified explicitly.

» Typecases can be open and closed.

» Type-indexed functions are first class.

N
Universiteit Utrecht ; =

N
U

Long-term goals

» Extend Haskell language with a type abstraction and type
application construct, and a typecase.

» Type-indexed types take the role of functional
dependencies.

» Type system and translation are similar to “dependency
style” and type classes: use of qualified types, dictionary
passing.

» Type arguments can be inferred in special cases.

» Type arguments can always be specified explicitly.

» Typecases can be open and closed.

» Type-indexed functions are first class.

» Generic functions come (almost) for free.

N
Universiteit Utrecht ; =

N
U

Long-term goals

» Extend Haskell language with a type abstraction and type
application construct, and a typecase.

» Type-indexed types take the role of functional
dependencies.

» Type system and translation are similar to “dependency
style” and type classes: use of qualified types, dictionary
passing.

» Type arguments can be inferred in special cases.

» Type arguments can always be specified explicitly.

» Typecases can be open and closed.

» Type-indexed functions are first class.

» Generic functions come (almost) for free.

» This talk: a few small steps. RN

Universiteit Utrecht = b <

N
U

Pattern Matching for Type-indexed Functions

Andres Loh

7 July 2004

@'%
N

Universiteit Utrecht

Current situation (Dependency-style)

Patterns are flat.
| x(Taq...oq) =e
Examples:

x ([a]) = ...
x (Fix ¢) = ...
x (GRose ¢ &) = ...

Forbidden:

x ([Int]) = ...

x([[a]]) =
x (Either o o) = ...

M

Universiteit Utrecht = b =

N

Historical reasons (MPC-style)

In MPC-style, type patterns are (unapplied) type constructors:

x ([]) = ...
x (Fix) .
x (GRose) = ...

corresponds to

x ([a])
x (Fix @) .
x (GRose p &) = ...

in Dependency-style.

<y
Universiteit Utrecht = b =

EN

Deep patterns are useful

Show <[Chﬂ7’]> X = n\nu Hox ,,\" "
ShOZU <[lx]> X = n [u
+H- concat (intersperse " ," (map show («) x))
_|_l_ "] n

flatten ([[«]]) x = [flatten ([«]) concat x]
flatten ([a]) x =x

Wy

Universiteit Utrecht = b =

N

Deep patterns are useful

Show <[Chﬂ7’]> X = n\nu Hox ,,\" "
ShOZU <[lx]> X = n [u
+H- concat (intersperse " ," (map show («) x))
H Il] n

flatten ([[«]]) x = [flatten ([«]) concat x]
flatten ([a]) x =x

The order of cases becomes relevant (currently irrelevant):

x ((Int,a)) =1
x ((a,Int)) =2
NS

Universiteit Utrecht = b =

EN

The plan

First, we liberalize the notion of dependencies.
Then, we present a translation of a type-indexed function with
deep patterns to

» multiple type-indexed functions
» using only flat patterns
» with fallthrough cases (new)

» possibly with multiple type arguments (new)

N
Universiteit Utrecht ; =

N
U

Liberalized dependencies

Dependencies are currently fixed per function. We want to track

dependencies by function case.
Example (from my thesis):

equal (Int) = (=)

equal (Unit) Unit Unit = True

equal (Sum a B) (Inlx) (Inly) = equal («) x y

equal (Sum o« B) (Inr x) (Inry) = equal (B) x

equal (Sum a By _ = False

equal (Prod o B) (x1 X x2) (y1 X yp) = equal {a) x1 x3 A equal (B) y1 Yo

equal (x — B) fx fy = equal ([B]) (map fx (enum («)))
(map fy (enum (a)))

Only one case (for functions) depends on enum, but the whole
function depends on it.
NN

Universiteit Utrecht = b =

EN

Liberalized dependencies — contd.

Currently, this means that a local redefinition for equal must
redefine enum as well:

let equal () x y = toUpper x == toUpper y
enum () = enum (Char)
in equal ([x]) "laMBdA" "Lambda" .

» Liberalized dependencies make dependencies variable
from case to case.

» In the above redefinition, enum would not be needed.

» Only if equal is called on function types, enum
dependencies are passed.

» This is very similar to type classes, which can have

different context for different instances. A
Uni iteit Utrecht §\‘ W,}é
niversiteit rec! =

N
U

Liberalized dependencies — contd.

Liberalized dependencies have disadvantages as well:

» Type signatures are needed for every case (modulo type
inference, which is future work as well).

» The qualified type of a function call depends on all
dependencies of all cases, whereas now one need only
know the type signature of the function.

Universiteit Utrecht = b

Nested pattern example: flatten

flatten (a) it (flatten (a)) =a —a
flatten ([[«]]) x = [flatten ([a]) (concat x)]
flatten ([a]) x=x

Usage:

flatten ([[[Int]]]) [[[1,2,3],[4,5,6]],[]7,8,9]]]
~[[[1,2,3,4,5,6,7,8,9]]]

A more interesting variant that always returns a list of depth 1
could be written using a type-indexed type.

<y
Universiteit Utrecht = b =

EN

Example: flatten — contd.

flatten (a) i (flatten (a)) = a —a
flatten ([[«]]) x = [flatten ([a]) (concat x)]
flatten ([a]) x=x
becomes
flatten (a) i (flatten (a),flatten, (a)) =a — a
flatten ([B]) = flatten, (B)
flatten (a) i (flatten (a), flatten, (a)) = [a] — [a]
flatten, ([B]) x = [flatten ([B]) (concat x)]

flatten, (B) x=x

Note the fallthrough case in flatten; .
\Wi/

Universiteit Utrecht =

%N

New concept: Fallthrough cases

» We allow a single dependency variable as a type pattern.

» For a fallthrough case, one component is generated, as for
any other case.

» A fallthrough case matches always.

» The translation is similar to the one for generic
abstractions.

» In fact, fallthrough cases can be seen as integrating generic
abstractions with typecase-based generic definitions.

N
Universiteit Utrecht ; =

N
U

Fallthrough cases — contd.

flatten, (a) it (flatten (a), flatten, (a)) = [a] — [a]
flatten, ([B]) x = [flatten ([B]) (concat x)]
flatten, (B) x=x

becomes

cp(flatteny, []) cp(flatten, B) cp(flatten,, B) x = ...
cp(flatten,, Any) cp(flatten, B) cp(flatten,, B) x = x

The call flatten, (Char) is translated to

cp(flatten,, Any) cp(flatten, Char) cp(flatten,, Char)
1 1

Wy

Universiteit Utrecht = 8 =

EN

Example: flatten — contd.

| Alatten ([[[Int]]]) x

@'%
N

Universiteit Utrecht

Example: flatten — contd.

flatten ([[[Int]]]) x

== { expansion of type application }
let {flatten (B) = flatten ([[Int]]); flatten, (B) = flatten, ([[Int]]) }
in flatten ([B]) x

sy

Universiteit Utrecht = 8 § «:

N

Example: flatten — contd.

flatten ([[[Int]]]) x

== { expansion of type application }

let {flatten (B) = flatten ([[Int]]); flatten, (B) = flatten, ([[Int]]) }
in flatten ([B]) x
-« {flatten ([B]) = flatten, (B)}

flatteny ([[Int]]) x

N

Universiteit Utrecht =
N

Example: flatten — contd.

flatten ([[[Int]]]) x

== { expansion of type application }
let {flatten (B) = flatten ([[Int]]); flatten, (B) = flatten, ([[Int]]) }
in flatten ([B]) x

-+ {flatten ([B]) = flatten, (B)}

flatteny ([[Int]]) x
== { expansion of type application }
let flatten (B) = flatten ([Int])
flatten, (B) = flatten, ([Int])
in flatten, ([B]) x

sy

Universiteit Utrecht = 8 § «:

N

Example: flatten — contd.

flatten ([[[Int]]]) x
== { expansion of type application }
let {flatten (B) = flatten ([[Int]]); flatten, (B) = flatten, ([[Int]]) }
in flatten ([B]) x
== {flatten ([B]) == flatten, (B)}
flatteny ([[Int]]) x
== { expansion of type application }
let flatten (B) = flatten ([Int])
flatten, (B) ﬂatten1 ([Int])
in flatten, ([B]) x
-« {flatten, ([B]) x = [flatten ([B]) (concat x)]}
let flatten (B) = flatten ([Int])
flatten, (B) = flatten; ([Int])
in [flatten ([B]) (concat x)]

Sy
Universiteit Utrecht = 8 § «:

N

Example: flatten — contd.

flatten ([[[Int]]]) x
== { previous slide }
let flatten (B) = flatten ([Int])

flatten, (B) = flatten, ([Int])
in [flatten ([B]) (concat x)]

Example: flatten — contd.

flatten ([[[Int]]]) x
== { previous slide }
let flatten (B) = flatten ([Int])
flatten, (B) = flatten, ([Int])

in [flatten ([B]) (concat x)]
== {flatten ([B]) = flatten, (B)}

[flatten, ([Int]) (concat x)]

sy

Universiteit Utrecht = 8 § «:

N

Example: flatten — contd.

flatten ([[[Int]]]) x

== { previous slide }
let flatten (B) = flatten (]
flatten, (B) = flatten, ([
in [flatten ([B]) (concat x)]
== {flatten ([B]) == flatten, (B)}
[flatten, ([Int]) (concat x)]
== { expansion of type application }
let flatten (B) = flatten (Int)
flatten, (B) = flatten, (Int)
in flatten, ([B]) x

Int])
Int])

Example: flatten — contd.

flatten ([[[Int]]]) x

== { previous slide }
let flatten (B) = flatten ([Int])
flatten, (B) = flatten, ([Int])
in [flatten ([B]) (concat x)]
== {flatten ([B]) == flatten, (B)}
[flatten, ([Int]) (concat x)]
== { expansion of type application }
let flatten (B) = flatten (Int)
flatten, (B) = flatten, (Int)
in flatten, ([B]) x
== {flatten, ([B]) x == [flatten ([B]) (concat x)]}
let flatten (B) = flatten (Int)
flatten, (B) = flatten, (Int)
n [[flatten ([B]) (concat (concat x))]] o A

Example: flatten — contd.

flatten ([[[Int]]]) x
:= { previous slide }
let flatten (B) = flatten (Int)

flatten, (B) = flatten; (Int)
in [[flatten ([B]) (concat (concat x))]]

Example: flatten — contd.

flatten ([[[Int]]]) x
:= { previous slide }
let flatten (B) = flatten (Int)
flatten, (B) = flatten; (Int)
n [[flatten ([B]) (concat (concat x))]]
== {flatten ([B]) == flatten, (B) }

[[flatten; (Int) (concat (concat x))]]

o~ o~

sy

Universiteit Utrecht = 8 § «:

N

Example: flatten — contd.

flatten ([[[Int]]]) x

:= { previous slide }

let flatten (B) = flatten (Int)
flatten, (B) = flatten; (Int)
n [[flatten ([B]) (concat (concat x))]]
== {flatten ([B]) == flatten, (B) }
[[flatten; (Int) (concat (concat x))]]
-« {flatten, (B) x = x}

[[(concat (concat x))]]

o~ o~

sy

Universiteit Utrecht = 8 § «:

N

Example: flatten — contd.

The translation of flatten depends on flatten,. What happens
with local redefinitions?

let flatten () x = reverse x
in flatten ([a]) [[[1,2,3],[4,5,6]],[[7,8,9]]]

<y
Universiteit Utrecht = b =

EN

Example: flatten — contd.

The translation of flatten depends on flatten,. What happens
with local redefinitions?

let flatten () x = reverse x
in flatten ([a]) [[[1,2,3],[4,5,6]],[[7,8,9]]]

This is translated to:

let flatten (w)

X =
flatten, (a) x =
in flatten ([a]) | [1 2,3],14,5,6]],[[7,8,9]]]

reverse x

The fallthrough case of flatten, is added. The result is

| [117.8,9]1,111,2,3],[4,5,6]]] -

<y
Universiteit Utrecht = b =

EN

New concept: Multiple type arguments

In the general case, we need multiple type arguments.

poly (Int,Int) (x,y) =x+y

poly (Int,Char) (x,_) =x

poly ({a,[Int]) (-, ys) = maximum ys
poly (Int,) (xy) =x+poly (a)y
poly (Char) X =ord x

NI

Universiteit Utrecht 7 (N «:

N

New concept: Multiple type arguments

In the general case, we need multiple type arguments.

poly (Int,Int) (x,y) =x+y
poly (Int,Char) (x,_) =x
poly ({a,[Int]) (-, ys) = maximum ys
poly (Int,) (xy) =x+poly (a)y
poly (Char) X =ord x
becomes
poly ((a, p)) = poly, (a) (B)
poly (Char) X =ord x
poly, (Int) (Int) (x,y) =x+y
poly, (Int) (Char) (x,_) =x
poly, () ([B]) = poly, (a) (B)
poly (&) (B) = polys () (B)
poly, (a) (Int) (_,ys) = maximum ys
poly, (a) (B) = poly; (&) ([B]) s
POZ]/3 (Int) <0(> (x,ys) — x+poly <D(> y Universiteit Utrecht ’%T§

Multiple type arguments — contd.

How do multiple type arguments work?

&%
Universiteit Utrecht = b =

N

Multiple type arguments — contd.

How do multiple type arguments work?
In each case of the definition,

» each of the type patterns must be flat,
» all type variables of all patterns must be distinct.

Sy
Universiteit Utrecht = b

N

Multiple type arguments — contd.

How do multiple type arguments work?
In each case of the definition,

» each of the type patterns must be flat,
» all type variables of all patterns must be distinct.
When applied,

» all type arguments have to be provided.

<y
Universiteit Utrecht = b =

EN

Multiple type arguments — contd.

How do multiple type arguments work?
In each case of the definition,

» each of the type patterns must be flat,
» all type variables of all patterns must be distinct.
When applied,
» all type arguments have to be provided.
Furthermore,
» Multiple type arguments interact with fallthrough cases.
» Multiple type arguments require per-case dependencies.

» Multiple type arguments allow to get rid of higher-arity
generic functions. For instance, map can be written with
two type arguments.

sy

Universiteit Utrecht = b <

N
U

Implementation of multiple type arguments

Once we have liberalized dependencies, they are easy to add.
» Each case of the definition is translated to a component.

» Components are parametrized by multiple type
constructors now.

Sy
Universiteit Utrecht = b

N

Implementation of multiple type arguments

Once we have liberalized dependencies, they are easy to add.
» Each case of the definition is translated to a component.

» Components are parametrized by multiple type
constructors now.

However:

» Specializations are also parametrized by multiple type
constructors.

» Potential explosion of specializations required, bounded
by d", where d is the number of datatypes and 7 is the
number of type arguments.

» In connection with fallthrough cases, code explosion does
not occur.
NI

Universiteit Utrecht = b <

N
U

Implementation of multiple type arguments — contd.

poly, (Int) (Int) (x,y) =x+y

poly, (Int) (Char) (x,-) =X

poly, (&) ([B]) = poly, (@) (B)

poly, (&) (B) = polys («) (B)
becomes

cp(poly,, Int x Int) (x,y) =x+y

cp(poly,, Int x Char) (x,) =x

cp(polyy, Any x []) cp(poly,,) (B) = cp(poly,, «) (B)

cp(polyy, Any x Any) cp(polys,) (B) = cp(poly,, «) (B)

Call translation:

| polys (1) {[Char]) ~~ ep(polys, Any x []) (poly, (Int) (Char))

Universiteit Utrecht = b =

N

~

o

Conclusions

Liberalized dependencies
» make dependency behaviour more similar to type classes

» are necessary to track a large number of dependencies
efficiently

Universiteit Utrecht = b =

Conclusions

Liberalized dependencies
» make dependency behaviour more similar to type classes
» are necessary to track a large number of dependencies
efficiently
Fallthrough cases
» are an important yet simple to implement extension
» are yet another concept next to generic abstraction (allows

higher-kinded abstractions) and default cases (allows
redirection of dependencies)

N
Universiteit Utrecht ; =

N
U

Conclusions

Liberalized dependencies
» make dependency behaviour more similar to type classes
» are necessary to track a large number of dependencies
efficiently
Fallthrough cases
» are an important yet simple to implement extension
» are yet another concept next to generic abstraction (allows

higher-kinded abstractions) and default cases (allows
redirection of dependencies)

Generic functions with multiple type arguments
» are necessary to implement deep patterns

» with liberalized dependencies, allow simplification of type

system
N

Universiteit Utrecht = b <

N
U

Conclusions

Liberalized dependencies
» make dependency behaviour more similar to type classes
» are necessary to track a large number of dependencies
efficiently
Fallthrough cases
» are an important yet simple to implement extension
» are yet another concept next to generic abstraction (allows

higher-kinded abstractions) and default cases (allows
redirection of dependencies)

Generic functions with multiple type arguments
» are necessary to implement deep patterns

» with liberalized dependencies, allow simplification of type

system

N2
More to come ... Comments? Universiteit Utrecht & 02
w

Acknowledgements

Many thanks to Arthur van Leeuwen for taking the time to
design this beautiful and (nearly) “huisstijl”-conformant IXTEX
theme.

Sy
Universiteit Utrecht = b

N

