Generalizing Generic Functions

Andres Löh

7 July 2004

Motivation

Despite "dependency style" Generic Haskell, generic functions have a number of restrictions:

- only one type argument
- no higher-order type-indexed functions
- only flat type patterns
- complicated types for generic functions of higher arity
- no inference of type arguments

Motivation

Despite "dependency style" Generic Haskell, generic functions have a number of restrictions:

- only one type argument
- no higher-order type-indexed functions
- only flat type patterns
- complicated types for generic functions of higher arity
- no inference of type arguments

Not all of the restrictions pose difficult problems, but all of them are "remaining work".

Motivation

Despite "dependency style" Generic Haskell, generic functions have a number of restrictions:

- only one type argument
- no higher-order type-indexed functions
- only flat type patterns
- complicated types for generic functions of higher arity
- no inference of type arguments

Not all of the restrictions pose difficult problems, but all of them are "remaining work".

Type classes (+extensions) solve many of these problems. Arjan has shown how to encode "dependency style" using type classes.

Getting Rid of Type Classes

Andres Löh

7 July 2004

More motivation

There are many similarities between type classes and type-indexed functions.

But type-indexed functions are better because:

- Type classes create a separate programming language on top of Haskell.
- Type classes seem to have the need of several extensions to acquire their full power.
- ► Type classes are not first-class either. They are "fixed".
- ► Type classes force implicit passing of dictionaries.

Long-term goals

- Extend Haskell language with a type abstraction and type application construct, and a typecase.
- Type-indexed types take the role of functional dependencies.
- Type system and translation are similar to "dependency style" and type classes: use of qualified types, dictionary passing.
- ► Type arguments can be inferred in special cases.
- Type arguments can always be specified explicitly.
- Typecases can be open and closed.
- ► Type-indexed functions are first class.

Long-term goals

- Extend Haskell language with a type abstraction and type application construct, and a typecase.
- Type-indexed types take the role of functional dependencies.
- Type system and translation are similar to "dependency style" and type classes: use of qualified types, dictionary passing.
- ► Type arguments can be inferred in special cases.
- Type arguments can always be specified explicitly.
- Typecases can be open and closed.
- ► Type-indexed functions are first class.
- ▶ Generic functions come (almost) for free.

Long-term goals

- Extend Haskell language with a type abstraction and type application construct, and a typecase.
- Type-indexed types take the role of functional dependencies.
- Type system and translation are similar to "dependency style" and type classes: use of qualified types, dictionary passing.
- Type arguments can be inferred in special cases.
- ► Type arguments can always be specified explicitly.
- ► Typecases can be open and closed.
- ► Type-indexed functions are first class.
- ▶ Generic functions come (almost) for free.
- ► This talk: a few small steps.

Pattern Matching for Type-indexed Functions Andres Löh

7 July 2004

Current situation (Dependency-style)

Patterns are flat.

$$x \langle T \alpha_1 \dots \alpha_k \rangle = e$$

Examples:

```
 \begin{vmatrix} x \langle [\alpha] \rangle & = \dots \\ x \langle Fix \varphi \rangle & = \dots \\ x \langle GRose \varphi \alpha \rangle = \dots \end{vmatrix}
```

Forbidden:

Historical reasons (MPC-style)

In MPC-style, type patterns are (unapplied) type constructors:

```
\begin{array}{ccc}
x & \langle [] \rangle & = \dots \\
x & \langle Fix \rangle & = \dots \\
x & \langle GRose \rangle & = \dots
\end{array}
```

corresponds to

$$\begin{vmatrix} x \langle [\alpha] \rangle &= \dots \\ x \langle Fix \varphi \rangle &= \dots \\ x \langle GRose \varphi \alpha \rangle &= \dots \end{vmatrix}$$

in Dependency-style.

Deep patterns are useful

```
show \langle [Char] \rangle x = "\" + x + "\" "
show \langle [\alpha] \rangle x = "[" + concat (intersperse ", " (map show \langle \alpha \rangle x)) + "]"
```

```
flatten \langle [[\alpha]] \rangle x = [flatten \langle [\alpha] \rangle concat x]
flatten \langle [\alpha] \rangle x = x
```


Deep patterns are useful

$$show \langle [Char] \rangle x = "\" + x + "\" \\ show \langle [\alpha] \rangle x = "[" \\ + concat (intersperse ", " (map show \langle \alpha \rangle x)) \\ + "]"$$

flatten
$$\langle [[\alpha]] \rangle x = [flatten \langle [\alpha] \rangle concat x]$$

flatten $\langle [\alpha] \rangle x = x$

The order of cases becomes relevant (currently irrelevant):

$$\begin{array}{ccc} x \langle (Int, \alpha) \rangle & = 1 \\ x \langle (\alpha, Int) \rangle & = 2 \end{array}$$

The plan

First, we liberalize the notion of dependencies. Then, we present a translation of a type-indexed function with deep patterns to

- multiple type-indexed functions
- using only flat patterns
- with fallthrough cases (new)
- possibly with multiple type arguments (new)

Liberalized dependencies

Dependencies are currently fixed *per function*. We want to track dependencies *by function case*. Example (from my thesis):

Only one case (for functions) depends on *enum*, but the whole function depends on it.

Liberalized dependencies – contd.

Currently, this means that a local redefinition for *equal* must redefine *enum* as well:

```
let equal \langle \alpha \rangle x y = toUpper x == toUpper y
enum \langle \alpha \rangle = enum \langle Char \rangle
in equal \langle [\alpha] \rangle "laMBdA" "Lambda".
```

- Liberalized dependencies make dependencies variable from case to case.
- ▶ In the above redefinition, *enum* would not be needed.
- Only if *equal* is called on function types, *enum* dependencies are passed.
- ► This is very similar to type classes, which can have different context for different instances.

Liberalized dependencies – contd.

Liberalized dependencies have disadvantages as well:

- ► Type signatures are needed for every case (modulo type inference, which is future work as well).
- ► The qualified type of a function call depends on all dependencies of all cases, whereas now one need only know the type signature of the function.

Nested pattern example: flatten

Usage:

flatten
$$\langle [[[Int]]] \rangle [[[1,2,3],[4,5,6]],[[7,8,9]]]$$

 $\rightarrow [[[1,2,3,4,5,6,7,8,9]]]$

A more interesting variant that always returns a list of depth 1 could be written using a type-indexed type.

becomes

Note the fallthrough case in *flatten*₁.

New concept: Fallthrough cases

- ▶ We allow a single dependency variable as a type pattern.
- ► For a fallthrough case, one component is generated, as for any other case.
- ► A fallthrough case matches always.
- ► The translation is similar to the one for generic abstractions.
- ► In fact, fallthrough cases can be seen as integrating generic abstractions with typecase-based generic definitions.

Fallthrough cases – contd.

becomes

```
cp(flatten_1, []) cp(flatten, \beta) cp(flatten_1, \beta) x = ... cp(flatten_1, Any) cp(flatten, \beta) cp(flatten_1, \beta) x = x
```

The call $flatten_1 \langle Char \rangle$ is translated to

cp(flatten₁, Any) cp(flatten, Char) cp(flatten₁, Char)

 $flatten \langle [[[Int]]] \rangle x$


```
 \begin{array}{l} \textit{flatten} \; \langle [[Int]]] \rangle \; x \\ == \{ \text{expansion of type application } \} \\ \text{let} \; \{ \textit{flatten} \; \langle \beta \rangle = \textit{flatten} \; \langle [[Int]] \rangle; \textit{flatten}_1 \; \langle \beta \rangle = \textit{flatten}_1 \; \langle [[Int]] \rangle \} \\ \text{in} \; \textit{flatten} \; \; \langle [\beta] \rangle \; x \\ \end{array}
```



```
flatten \ \langle [[[Int]]] \rangle \ x \\ == \{ \ expansion \ of \ type \ application \ \} \\ \ let \ \{ flatten \ \langle \beta \rangle = flatten \ \langle [[Int]] \rangle; flatten_1 \ \langle \beta \rangle = flatten_1 \ \langle [[Int]] \rangle \} \\ \ in \ flatten \ \langle [\beta] \rangle \ x \\ == \{ flatten \ \langle [\beta] \rangle == flatten_1 \ \langle \beta \rangle \} \\ \ flatten_1 \ \langle [[Int]] \rangle \ x \\ == \{ \ expansion \ of \ type \ application \ \} \\ \ let \ flatten \ \langle \beta \rangle = flatten \ \langle [Int] \rangle \\ \ flatten_1 \ \langle \beta \rangle = flatten_1 \ \langle [Int] \rangle \\ \ in \ flatten_1 \ \langle [\beta] \rangle \ x \\ \end{cases}
```



```
flatten \langle [[[Int]]] \rangle x
== \{ expansion of type application \}
      let { flatten \langle \beta \rangle = flatten \langle [[Int]] \rangle; flatten<sub>1</sub> \langle \beta \rangle = flatten<sub>1</sub> \langle [[Int]] \rangle }
      in flatten \langle [\beta] \rangle x
 = \{\mathit{flatten}\ \langle [\beta] \rangle = \mathit{flatten}_1\ \langle \beta \rangle \}
     flatten_1 \langle [[Int]] \rangle x
 == { expansion of type application }
      let flatten \langle \beta \rangle = flatten \langle [Int] \rangle
            flatten_1 \langle \beta \rangle = flatten_1 \langle [Int] \rangle
      in flatten<sub>1</sub> \langle [\beta] \rangle x
 = \{ flatten_1 \langle [\beta] \rangle \ x = [flatten \langle [\beta] \rangle \ (concat \ x)] \}
      let flatten \langle \beta \rangle = flatten \langle [Int] \rangle
            flatten_1 \langle \beta \rangle = flatten_1 \langle [Int] \rangle
       in [flatten \langle [\beta] \rangle (concat x)]
```

```
flatten \ \langle [[[Int]]] \rangle \ x
= \{ \text{previous slide } \}
\mathbf{let} \ flatten \ \ \langle \beta \rangle = flatten \ \ \langle [Int] \rangle
flatten_1 \ \ \langle \beta \rangle = flatten_1 \ \ \langle [Int] \rangle
\mathbf{in} \ \ [flatten \ \ \langle [\beta] \rangle \ \ (concat \ x)]
= \{ flatten \ \ \langle [\beta] \rangle = flatten_1 \ \ \langle \beta \rangle \}
[flatten_1 \ \ \langle [Int] \rangle \ \ (concat \ x)]
```

```
flatten \langle [[Int]] \rangle x
== {previous slide }
let flatten \langle \beta \rangle = flatten \langle [Int] \rangle
                    flatten_1 \langle \beta \rangle = flatten_1 \langle [Int] \rangle
in [flatten \langle [\beta] \rangle (concat x)]

== {flatten \langle [\beta] \rangle == flatten<sub>1</sub> \langle \beta \rangle}

[flatten<sub>1</sub> \langle [Int] \rangle (concat x)]

== {expansion of type application }
           \begin{array}{ll} \textbf{let} \ \textit{flatten} & \langle \beta \rangle = \textit{flatten} & \langle \textit{Int} \rangle \\ \textit{flatten}_1 & \langle \beta \rangle = \textit{flatten}_1 & \langle \textit{Int} \rangle \end{array}
            in flatten<sub>1</sub> \langle [\beta] \rangle x
```

```
flatten \langle [[Int]] \rangle x
== {previous slide }
    let flatten \langle \beta \rangle = flatten \langle \lceil Int \rceil \rangle
          flatten_1 \langle \beta \rangle = flatten_1 \langle [Int] \rangle
    in [flatten \langle [\beta] \rangle (concat x)]
= \{ flatten \langle [\beta] \rangle = flatten_1 \langle \beta \rangle \}
     [flatten<sub>1</sub> \langle [Int] \rangle (concat x)]
== { expansion of type application }
    let flatten \langle \beta \rangle = flatten \langle Int \rangle
          flatten_1 \langle \beta \rangle = flatten_1 \langle Int \rangle
    in flatten<sub>1</sub> \langle [\beta] \rangle x
= \{ flatten_1 \ \langle [\beta] \rangle \ x = [flatten \ \langle [\beta] \rangle \ (concat \ x)] \}
    let flatten \langle \beta \rangle = flatten \langle Int \rangle
          flatten_1 \langle \beta \rangle = flatten_1 \langle Int \rangle
    in [[flatten \langle [\beta] \rangle (concat (concat x))]]
```

```
flatten \ \langle [[Int]]] \rangle \ x
= \{ \text{previous slide } \}
\mathbf{let} \ flatten \ \langle \beta \rangle = flatten \ \langle Int \rangle
flatten_1 \ \langle \beta \rangle = flatten_1 \ \langle Int \rangle
\mathbf{in} \ [[flatten \ \langle [\beta] \rangle \ (concat \ (concat \ x))]]
```



```
flatten \langle [[[Int]]] \rangle x

== { previous slide }

let flatten \langle \beta \rangle = flatten \ \langle Int \rangle

flatten<sub>1</sub> \langle \beta \rangle = flatten_1 \ \langle Int \rangle

in [[flatten \langle [\beta] \rangle \ (concat \ (concat \ x))]]

== { flatten \langle [\beta] \rangle = flatten_1 \ \langle \beta \rangle \}

[[flatten_1 \ \langle Int \rangle \ (concat \ (concat \ x))]]
```


The translation of *flatten* depends on *flatten* $_1$. What happens with local redefinitions?

```
let flatten \langle \alpha \rangle x = reverse x in flatten \langle [\alpha] \rangle [[[1,2,3],[4,5,6]],[[7,8,9]]]
```

The translation of *flatten* depends on *flatten* $_1$. What happens with local redefinitions?

```
let flatten \langle \alpha \rangle x = reverse x in flatten \langle [\alpha] \rangle [[[1,2,3],[4,5,6]],[[7,8,9]]]
```

This is translated to:

```
let flatten \langle \alpha \rangle x = reverse \ x flatten<sub>1</sub> \langle \alpha \rangle x = x in flatten \langle [\alpha] \rangle [[[1,2,3],[4,5,6]],[[7,8,9]]]
```

The fallthrough case of $flatten_1$ is added. The result is

New concept: Multiple type arguments

In the general case, we need multiple type arguments.

```
\begin{array}{lll} poly & \langle Int, Int \rangle & (x,y) = x+y \\ poly & \langle Int, Char \rangle & (x,\_) = x \\ poly & (\langle \alpha, [Int] \rangle & (\_,ys) = maximum \ ys \\ poly & \langle Int, \alpha \rangle & (x,y) = x+poly \ \langle \alpha \rangle \ y \\ poly & \langle Char \rangle & x = ord \ x \end{array}
```

New concept: Multiple type arguments

In the general case, we need multiple type arguments.

becomes

```
 \begin{array}{llll} & poly & \langle (\alpha,\beta) \rangle & = poly_1 & \langle \alpha \rangle & \langle \beta \rangle \\ & poly & \langle Char \rangle & x & = ord & x \\ & poly_1 & \langle Int \rangle & \langle Int \rangle & (x,y) & = x+y \\ & poly_1 & \langle Int \rangle & \langle Char \rangle & (x,\_) & = x \\ & poly_1 & \langle \alpha \rangle & \langle [\beta] \rangle & = poly_2 & \langle \alpha \rangle & \langle \beta \rangle \\ & poly_1 & \langle \alpha \rangle & \langle \beta \rangle & = poly_3 & \langle \alpha \rangle & \langle \beta \rangle \\ & poly_2 & \langle \alpha \rangle & \langle Int \rangle & (\_,ys) & = maximum & ys \\ & poly_2 & \langle \alpha \rangle & \langle \beta \rangle & = poly_3 & \langle \alpha \rangle & \langle [\beta] \rangle \\ & poly_3 & \langle Int \rangle & \langle \alpha \rangle & (x,ys) & = x+poly & \langle \alpha \rangle & y \\ \end{array}
```

Universiteit Utrecht

How do multiple type arguments work?

How do multiple type arguments work? In each case of the definition,

- each of the type patterns must be flat,
- all type variables of all patterns must be distinct.

How do multiple type arguments work? In each case of the definition,

- each of the type patterns must be flat,
- all type variables of all patterns must be distinct.

When applied,

▶ all type arguments have to be provided.

How do multiple type arguments work? In each case of the definition,

- each of the type patterns must be flat,
- all type variables of all patterns must be distinct.

When applied,

all type arguments have to be provided.

Furthermore,

- ► Multiple type arguments interact with fallthrough cases.
- ▶ Multiple type arguments require per-case dependencies.
- Multiple type arguments allow to get rid of higher-arity generic functions. For instance, map can be written with two type arguments.

Implementation of multiple type arguments

Once we have liberalized dependencies, they are easy to add.

- ► Each case of the definition is translated to a component.
- Components are parametrized by multiple type constructors now.

Implementation of multiple type arguments

Once we have liberalized dependencies, they are easy to add.

- ► Each case of the definition is translated to a component.
- Components are parametrized by multiple type constructors now.

However:

- Specializations are also parametrized by multiple type constructors.
- Potential explosion of specializations required, bounded by d^n , where d is the number of datatypes and n is the number of type arguments.
- ► In connection with fallthrough cases, code explosion does not occur.

Implementation of multiple type arguments – contd.

```
\begin{array}{llll} & poly_1 \; \langle Int \rangle \; \langle Int \rangle & (x,y) & = x+y \\ & poly_1 \; \langle Int \rangle \; \langle Char \rangle & (x,\_) & = x \\ & poly_1 \; \langle \alpha \rangle \; \; \langle [\beta] \rangle & = poly_2 \; \langle \alpha \rangle \; \langle \beta \rangle \\ & poly_1 \; \langle \alpha \rangle \; \; \langle \beta \rangle & = poly_3 \; \langle \alpha \rangle \; \langle \beta \rangle \end{array}
```

becomes

$$\begin{array}{llll} & \mathsf{cp}(poly_1, Int \times Int) & (x,y) & = x+y \\ & \mathsf{cp}(poly_1, Int \times Char) & (x,_) & = x \\ & \mathsf{cp}(poly_1, Any \times [\,]) & \mathsf{cp}(poly_2, \alpha) & (\beta) = \mathsf{cp}(poly_2, \alpha) & (\beta) \\ & \mathsf{cp}(poly_1, Any \times Any) & \mathsf{cp}(poly_3, \alpha) & (\beta) = \mathsf{cp}(poly_3, \alpha) & (\beta) \end{array}$$

Call translation:

$$poly_1 \; \langle Int \rangle \; \langle [Char] \rangle \leadsto \mathsf{cp}(poly_1, Any \times [\,]) \; (poly_2 \; \langle Int \rangle \; \langle Char \rangle)$$
 Universiteit Utrecht

Liberalized dependencies

- make dependency behaviour more similar to type classes
- are necessary to track a large number of dependencies efficiently

Liberalized dependencies

- make dependency behaviour more similar to type classes
- are necessary to track a large number of dependencies efficiently

Fallthrough cases

- are an important yet simple to implement extension
- are yet another concept next to generic abstraction (allows higher-kinded abstractions) and default cases (allows redirection of dependencies)

Liberalized dependencies

- make dependency behaviour more similar to type classes
- are necessary to track a large number of dependencies efficiently

Fallthrough cases

- are an important yet simple to implement extension
- are yet another concept next to generic abstraction (allows higher-kinded abstractions) and default cases (allows redirection of dependencies)

Generic functions with multiple type arguments

- are necessary to implement deep patterns
- with liberalized dependencies, allow simplification of type system

Liberalized dependencies

- make dependency behaviour more similar to type classes
- are necessary to track a large number of dependencies efficiently

Fallthrough cases

- are an important yet simple to implement extension
- are yet another concept next to generic abstraction (allows higher-kinded abstractions) and default cases (allows redirection of dependencies)

Generic functions with multiple type arguments

- are necessary to implement deep patterns
- with liberalized dependencies, allow simplification of type system

More to come ... Comments?

Acknowledgements

Many thanks to Arthur van Leeuwen for taking the time to design this beautiful and (nearly) "huisstijl"-conformant LATEX theme.

