Recovering explicit recursion
in Generic Haskell

Andres Loh
16. Oktober 2002

Two styles

Ralf Hinze introduced two styles of generic functions:

equal (t ::)

equal (Unit) Unit Unit
equal{a:+:b) (Inl ay) (Inl ay)
equal{a:+:b) (Inr by) (Inr by)
equal{a:+:b) _

equal{a:x:b)

type Equal((+) t

type Equal{x — «')) t

equal (t :: k)

equal(Umt) Unit Unit

equal (:+:) eq, eq, (Inl ay) (Inl ay)
equal (:+:) eq, eq, (Inr by) (Inr by)
equal(:+:) eq, eq;, — —

equal {:X:)

it t — t — Bool

= True

= equal{a) a; ay

= equal(b) by by

= False

(a1 x:b1) (ag:x:by) = equal{a) ay ay N equal(b) by by

=t — t — Bool

= Vu.Equal () u — Equal(x") (tu)
2 Equal (k) t

= True

=eq, a1 ap

=eq, by by

= False

eq, eqy (a1 :x:b1) (ap:x:by) =eq, aq ax A eqy, by by

Two styles

Ralf Hinze introduced two styles of generic functions:

equal (t ::) 2 t — t — Bool

equal(Unit) Unit Unit = True

equal{a:+:b) (Inl ay) (Inl ay) = equal{a) a; ay

equal{a:+:b) (Inr by) (Inr by) = equal(b) by by

equal{a:+:b) _ = False

equal{a:x:b) (a1 x:by) (ag:x:by) = equal(a) ay ay N equal(b) by by

Two styles

Ralf Hinze introduced two styles of generic functions:

equal (t ::) 2 t — t — Bool

equal(Unit) Unit Unit = True

equal{a:+:b) (Inl ay) (Inl ay) = equal{a) a; ay

equal{a:+:b) (Inr by) (Inr by) = equal(b) by by

equal{a:+:b) _ = False

equal{a:x:b) (a1 x:by) (ag:x:by) = equal(a) ay ay N equal(b) by by

0 POPL-style

Two styles

Ralf Hinze introduced two styles of generic functions:

equal (t ::) 2 t — t — Bool

equal(Unit) Unit Unit = True

equal{a:+:b) (Inl ay) (Inl ay) = equal{a) a; ay

equal{a:+:b) (Inr by) (Inr by) = equal(b) by by

equal{a:+:b) _ = False

equal{a:x:b) (a1 x:by) (ag:x:by) = equal(a) ay ay N equal(b) by by

O POPL-style
O explicit recursion

Two styles

Ralf Hinze introduced two styles of generic functions:

equal (t ::) 2 t — t — Bool

equal(Unit) Unit Unit = True

equal{a:+:b) (Inl ay) (Inl ay) = equal{a) a; ay

equal{a:+:b) (Inr by) (Inr by) = equal(b) by by

equal{a:+:b) _ = False

equal{a:x:b) (a1 x:by) (ag:x:by) = equal(a) ay ay N equal(b) by by

O POPL-style
O explicit recursion
O simple type signature

Two styles

Ralf Hinze introduced two styles of generic functions:

equal (t ::) 2 t — t — Bool

equal(Unit) Unit Unit = True

equal{a:+:b) (Inl ay) (Inl ay) = equal{a) a; ay

equal{a:+:b) (Inr by) (Inr by) = equal(b) by by

equal{a:+:b) _ = False

equal{a:x:b) (a1 x:by) (ag:x:by) = equal(a) ay ay N equal(b) by by

0 POPL-style

O explicit recursion

O simple type signature

O works only for kind * types

Two styles

Ralf Hinze introduced two styles of generic functions:

equal (t ::) 2 t — t — Bool

equal (Unit) Unit Unit = True

equal{a:+:b) (Inl ay) (Inl ay) = equal{a) a; ay

equal{a:+:b) (Inr by) (Inr by) = equal(b) by by

equal{a:+:b) _ = False

equal{a:x:b) (a1 x:by) (ag:x:by) = equal(a) ay ay N equal(b) by by
O POPL-style

O explicit recursion

O simple type signature

O works only for kind * types

O not implemented in Generic Haskell

Two styles

Ralf Hinze introduced two styles of generic functions:

type Equal((+) t =t — t — Bool

type Equal{x — «')) t = Vu.Equal{x) u — Equal{(«") (tu)
equal (t :: k) 2 Equal{(k)) t

equal (Umt) Unit Unit = True

equal(:+:) eq, eqy (Inl ay) (Inl az) = eq, a1 az

equal (:+:) eq, eq, (Inr by) (Inr by) =eq, by by

equal (:+:) eq, eq;, — — = False

equal (:x:) eq, eq, (a1 :X:b1) (ap:Xx:by) =eq, a; ay A eqy by by

Two styles

Ralf Hinze introduced two styles of generic functions:

type Equal((+) t =t — t — Bool

type Equal{x — «')) t = Vu.Equal{x) u — Equal{(«") (tu)
equal (t :: k) 2 Equal{(k)) t

equal(Unit) Unit Unit = True

equal (:+:) eq, eq, (Inl ay) (Inl ap) =eq, a1 ap

equal (:+:) eq, eq, (Inr by) (Inr by) =eq, by by

equal (:+:) eq, eq;, — — = False

equal (:x:) eq, eq, (a1 :X:b1) (ap:Xx:by) =eq, a; ay A eqy by by

O MPC-style

Two styles

Ralf Hinze introduced two styles of generic functions:

type Equal((+) t =t — t — Bool
type Equal{x — «')) t = Vu.Equal{x) u — Equal{(«") (tu)
equal (t :: k) 2 Equal{(k)) t
equal(Unit) Unit Unit = True
equal (:+:) eq, eq, (Inl ay) (Inl ap) =eq, a1 ap
equal (:+:) eq, eq, (Inr by) (Inr by) =eq, by by
equal (:+:) eq, eq;, — — = False
equal (:x:) eq, eq, (a1 :X:b1) (ap:Xx:by) =eq, a; ay A eqy by by
O MPC-style

O implicit recursion

Two styles

Ralf Hinze introduced two styles of generic functions:

type Equal((+) t =t — t — Bool
type Equal{x — «')) t = Vu.Equal{x) u — Equal{(«") (tu)
equal (t :: k) 2 Equal{(k)) t
equal(Unit) Unit Unit = True
equal (:+:) eq, eq, (Inl ay) (Inl ap) =eq, a1 ap
equal (:+:) eq, eq, (Inr by) (Inr by) =eq, by by
equal (:+:) eq, eq;, — — = False
equal (:x:) eq, eq, (a1 :X:b1) (ap:Xx:by) =eq, a; ay A eqy by by
O MPC-style

O implicit recursion
O complicated type signature

Two styles

Ralf Hinze introduced two styles of generic functions:

type Equal((+) t =t — t — Bool
type Equal{x — «')) t = Vu.Equal{x) u — Equal{(«") (tu)
equal (t :: k) 2 Equal{(k)) t
equal(Unit) Unit Unit = True
equal (:+:) eq, eq, (Inl ay) (Inl ap) =eq, a1 ap
equal (:+:) eq, eq, (Inr by) (Inr by) =eq, by by
equal (:+:) eq, eq;, — — = False
equal (:x:) eq, eq, (a1 :X:b1) (ap:Xx:by) =eq, a; ay A eqy by by
O MPC-style

O implicit recursion
O complicated type signature
O works for all types of all kinds!

Two styles

Ralf Hinze introduced two styles of generic functions:

type Equal((+) t =t — t — Bool
type Equal{x — «')) t = Vu.Equal{x) u — Equal{(«") (tu)
equal (t :: k) 2 Equal{(k)) t
equal(Unit) Unit Unit = True
equal (:+:) eq, eq, (Inl ay) (Inl ap) =eq, a1 ap
equal (:+:) eq, eq, (Inr by) (Inr by) =eq, by by
equal (:+:) eq, eq;, — — = False
equal (:x:) eq, eq, (a1 :X:b1) (ap:Xx:by) =eq, a; ay A eqy by by
O MPC-style

O implicit recursion

O complicated type signature

O works for all types of all kinds!
O implemented in Generic Haskell

Two styles

Ralf Hinze introduced two styles of generic functions:

equal (t ::)

equal (Unit) Unit Unit
equal{a:+:b) (Inl ay) (Inl ay)
equal{a:+:b) (Inr by) (Inr by)
equal{a:+:b) _

equal{a:x:b)

type Equal((+) t

type Equal{x — «')) t

equal (t :: k)

equal(Umt) Unit Unit

equal (:+:) eq, eq, (Inl ay) (Inl ay)
equal (:+:) eq, eq, (Inr by) (Inr by)
equal(:+:) eq, eq;, — —

equal {:X:)

it t — t — Bool

= True

= equal{a) a; ay

= equal(b) by by

= False

(a1 x:b1) (ag:x:by) = equal{a) ay ay N equal(b) by by

=t — t — Bool

= Vu.Equal () u — Equal(x") (tu)
2 Equal (k) t

= True

=eq, a1 ap

=eq, by by

= False

eq, eqy (a1 :x:b1) (ap:x:by) =eq, aq ax A eqy, by by

Comparison

Explicit recursion (POPL) is more intuitive ...

Comparison

Explicit recursion (POPL) is more intuitive ...
...but Generic Haskell implements only implicit recursion (MPC).

Comparison

Explicit recursion (POPL) is more intuitive ...
...but Generic Haskell implements only implicit recursion (MPC).

This talk

Step by step towards explicit recursion in Generic Haskell — without
losing the advantages of the current implementation.

Why implicit recursion?

Why implicit recursion?

Generic functions are specialised

Why implicit recursion?

Generic functions are specialised

O If called with a specific type argument, a specialised instance
of the generic function is generated.

Why implicit recursion?

Generic functions are specialised

O If called with a specific type argument, a specialised instance
of the generic function is generated.

0 Inimplicitly recursive style, generic functions poly fulfill the
property
poly(f a) = poly(f) (poly(a))
That makes specialisation compositional and guaranteed to
terminate.

Why implicit recursion?

Generic functions are specialised

O

O

If called with a specific type argument, a specialised instance
of the generic function is generated.

In implicitly recursive style, generic functions poly fulfill the
property

poly(f a) = poly(f) (poly(a))

That makes specialisation compositional and guaranteed to
terminate.

Explictly recursive functions as introduced by Ralf Hinze have
a few significant limitations (next to the restriction to type

arguments of one fixed kind) and are hard to implement
directly.

A closer look

O Inimplicit recursive style, a generic function consists of
multiple cases for different type arguments.

A closer look

O Inimplicit recursive style, a generic function consists of
multiple cases for different type arguments.

O Each type argument is the name of a type

A closer look

O Inimplicit recursive style, a generic function consists of
multiple cases for different type arguments.

O Each type argument is the name of a type
O defined by a data statement
O defined by a newtype statement
O defined by a type statement
O builtin — such as (—), [], or (,)

A closer look

O Inimplicit recursive style, a generic function consists of
multiple cases for different type arguments.

O Each type argument is the name of a type
O defined by a data statement
O defined by a newtype statement
O defined by a type statement
O builtin — such as (—), [], or (,)
O The kind of the type argument determines the type of the case.

A closer look

O

g

O

In implicit recursive style, a generic function consists of
multiple cases for different type arguments.

Each type argument is the name of a type
O defined by a data statement
O defined by a newtype statement
O defined by a type statement
O builtin — such as (—), [], or (,)
The kind of the type argument determines the type of the case.

Yes, there are also special cases for constructors and labels and
even for specific constructors, but we’ll ignore them for now.

Reintroducing explicit recursion

Just a syntactic variation . ..

equal(Unit) Unit Unit = True

equal (:+:) eq, eq, (Inl ay) (Inl ay) =eq, a1 ap

equal(:+:) eq, eqy, (Inr by) (Inr by) =eq, by by

equal (:+:) eq, eq, — = False

equal (:x:) eq, eq), (a1 :x:by) (ap:Xx:by) =eq, a1 ap N\ eq, by by

O This is the original (implicit) definition of equal.

Reintroducing explicit recursion

Just a syntactic variation . ..

equal(Unit) Unit Unit = True

equal (:+:) eq, eq, (Inl ay) (Inl ay) =eq, a1 ap

equal(:+:) eq, eqy, (Inr by) (Inr by) =eq, by by

equal (:+:) eq, eq, — = False

equal (:x:) eq, eq), (a1 :x:by) (ap:Xx:by) =eq, a1 ap N\ eq, by by

00 We add type variables to the type arguments in the cases.

Reintroducing explicit recursion

Just a syntactic variation . ..

equal(Unit) Unit Unit = True

equal(a:+:b) eq, eq, (Inl ay) (Inl ay) =eq, a1 ap
equal{a:+:b) eq, eq, (Inr by) (Inr by) = eq, by by
equal{a:+:b) eq, eq, — _ = False

equal{a:x:b) eq, eq, (a1:X:b1) (ap:x:by) =eq, aj ap A eqy by by

00 We add type variables to the type arguments in the cases.

O We ignore the additional arguments (eg, and eq,), and instead
refer to them making use of the newly introduced type
variables.

Reintroducing explicit recursion

Just a syntactic variation . ..

equal(Unit) Unit Unit = True

equal{a:+:b) (Inl ay) (Inl ap) = equal{a) ay ap

equal{a:+:b) (Inr by) (Inr by) = equal (b) by by

equal{a:+:b) _ _ = False

equal{a:x:b) (ay:x:b1) (ay:x:by) = equal{a) ay ay A equal(b) by by

00 We add type variables to the type arguments in the cases.

O We ignore the additional arguments (eg, and eq;), and instead
refer to them making use of the newly introduced type
variables.

O Note that there is no difference at all for the Unit case (kind
type cases).

Another example using type-indexed types

data Paira b = Null | Paira b

type FMap(Unit) v = FMapUnit (Maybe v)

type FMap(a:+:b) v = FMapSum (Pair (FMap(a) v) (FMap(b) v))
type FMap(a:x:b) v = FMapProd (FMap{a) (FMap(b) v))
empty(Unit) = FMapUnit Nothing

empty(a:+:b) = FMapSum Null

empty(a:x:b) = FMapProd empty(a)

O Type-indexed finite maps (so-called tries) store sum types in a
pair of maps and product types in a nested map.

O The function empty constructs a finite map with no elements.

O The translation works exactly the same way as on the previous
slide, but we present it in the other direction.

Another example using type-indexed types

data Paira b = Null | Paira b

type FMap(Unit) v = FMapUnit (Maybe v)

type FMap(a :+:b) fm, fm, v = FMapSum (Pair (fm, v) (fm, v))
type FMap(a :x:b) fm, fm;, v = FMapProd (fm, (fm, v))
empty(Unit) = FMapUnit Nothing
empty(a:+:b) empty, empty, = FMapSum Null

empty(a:x:b) empty, empty, = FMapProd empty,

O Type-indexed finite maps (so-called tries) store sum types in a

pair of maps and product types in a nested map.
O The function empty constructs a finite map with no elements.

O The translation works exactly the same way as on the previous

slide, but we present it in the other direction.

Another example using type-indexed types

data Paira b = Null | Paira b

type FMap(Unit) v = FMapUnit (Maybe v)

type FMap(:+:) fm, fm, v = FMapSum (Pair (fm, v) (fm, v))
type FMap(:x:) fm, fm, v = FMapProd (fm, (fm, v))
empty(Unit) = FMapUnit Nothing

empty(:+:) empty, empty, = FMapSum Null

empty(:x:) empty, empty, = FMapProd empty,

O Type-indexed finite maps (so-called tries) store sum types in a

pair of maps and product types in a nested map.
O The function empty constructs a finite map with no elements.

O The translation works exactly the same way as on the previous

slide, but we present it in the other direction.

Increased expressive power

single(Unit) (Unit,v) = FMapUnit (Just v)

single(a:+:b)y (Inl a,v) = FMapSum (Pair (single(a) (a,v)) empty(b))
single(a :+:b) (Inr b, v) = FMapSum (Pair empty{a) (single(b) (b,v)))
single{a:x:b) (a:x:b,v) = FMapProd (single(a) (a, single(b) (b,v)))

O Yet another example. The function single takes a key-value pair
and constructs a map which contains just that single
association.

O The difference is that the function refers to both single and
empty on the right hand side.

Increased expressive power

single(Unit) (Unit,v) = FMapUnit (Just v)
single(a:+:b) sig siy (Inl a,v) = FMapSum (Pair (siz (a,v)) emy)
single{a :+:b) siy sip, (Inr b,v) = FMapSum (Pair em, (siy (b,0v)))
single{a :x:b) siy siy (a:x:b,v) = FMapProd (siq (a,si, (b,v)))

O Yet another example. The function single takes a key-value pair
and constructs a map which contains just that single
association.

O The difference is that the function refers to both single and
empty on the right hand side.

Increased expressive power

single(Unit) (Unit,v) = FMapUnit (Just v)

single(:+:) siy sip (Inl a,v) = FMapSum (Pair (siy (a,v)) emy,)
single(:+:) siq siy (Inr b, v) = FMapSum (Pair em, (siy (b,v)))
single(:x:) sig siy (a:x:b,v) = FMapProd (siq (a,si, (b,v)))

O Yet another example. The function single takes a key-value pair
and constructs a map which contains just that single
association.

O The difference is that the function refers to both single and
empty on the right hand side.

O After the reverse-translation, it becomes clear that there is no
way to refer to the empty function for a child type.

Increased expressive power

single(Unit) (Unit,v) = FMapUnit (Just v)

single(:+:) siy sip (Inl a,v) = FMapSum (Pair (siy (a,v)) emy,)
single(:+:) siq siy (Inr b, v) = FMapSum (Pair em, (siy (b,v)))
single(:x:) sig siy (a:x:b,v) = FMapProd (siq (a,si, (b,v)))

O Yet another example. The function single takes a key-value pair
and constructs a map which contains just that single
association.

O The difference is that the function refers to both single and
empty on the right hand side.

O After the reverse-translation, it becomes clear that there is no
way to refer to the empty function for a child type.

O Thus, the explicitly recursive syntax seems to give us more
power than the implicit one.

Increased expressive power

single(Unit) (Unit,v) = FMapUnit (Just v)

single(:+:) siy sip (Inl a,v) = FMapSum (Pair (siy (a,v)) emy,)
single(:+:) siq siy (Inr b, v) = FMapSum (Pair em, (siy (b,v)))
single(:x:) sig siy (a:x:b,v) = FMapProd (siq (a,si, (b,v)))

O Yet another example. The function single takes a key-value pair
and constructs a map which contains just that single
association.

O The difference is that the function refers to both single and
empty on the right hand side.

O After the reverse-translation, it becomes clear that there is no
way to refer to the empty function for a child type.

O Thus, the explicitly recursive syntax seems to give us more
power than the implicit one.

O Let us investigate how we can express single in implicitly
recursive syntax.

Translation A: Tupling

Since we need both single and empty in the definition of single, we
could define both functions at the same time, as a pair.

singlee(Unit) = A(Unit,v) — FMapUnit (Just v)

singlee(:+:) siy siy
= Ax — case x of
(Inl a,v) — FMapSum (Pair (siz (a,v)) emy)
(Inr b,v) — FMapSum (Pair em, (si, (b,v)))

singlee(:x:) sig Si
= A(a:x:b,v) — FMapProd (sig (a,siy (b,0)))

Translation A: Tupling

Since we need both single and empty in the definition of single, we
could define both functions at the same time, as a pair.

singlee(Unit) = (A(Unit,v) — FMapUnit (Just v)
,empty(Unit))
singlee(:+:) (sia, emg) (siy, emy)
= (Ax — case x of
(Inl a,v) — FMapSum (Pair (siz (a,v)) emy)
(Inr b,v) — FMapSum (Pair em, (si, (b,v)))
Jempty(:+:) emg emy)
singlee(:x:) (siq, emy) (siy, emy)
= (A(a:x:b,v) — FMapProd (sig (a,siy (b,0)))
,empty(:x:) emg emy)
single(t :: %) = fst (singlee(t :: x))

Translation A: Tupling

Since we need both single and empty in the definition of single, we
could define both functions at the same time, as a pair.

singlee(Unit) = (A(Unit,v) — FMapUnit (Just v)
,empty(Unit))
singlee(:+:) (sia, emg) (siy, emy)
= (Ax — case x of
(Inl a,v) — FMapSum (Pair (siz (a,v)) emy)
(Inr b,v) — FMapSum (Pair em, (si, (b,v)))
Jempty(:+:) emg emy)
singlee(:x:) (siq, emy) (siy, emy)
= (A(a:x:b,v) — FMapProd (sig (a,siy (b,0)))
,empty(:x:) emg emy)
single(t :: %) = fst (singlee(t :: x))

O Tupling works without modification of the compiler.

Translation A: Tupling

Since we need both single and empty in the definition of single, we
could define both functions at the same time, as a pair.

singlee(Unit) = (A(Unit,v) — FMapUnit (Just v)
,empty(Unit))
singlee(:+:) (sia, emg) (siy, emy)
= (Ax — case x of
(Inl a,v) — FMapSum (Pair (siz (a,v)) emy)
(Inr b,v) — FMapSum (Pair em, (si, (b,v)))
Jempty(:+:) emg emy)
singlee(:x:) (siq, emy) (siy, emy)
= (A(a:x:b,v) — FMapProd (sig (a,siy (b,0)))
,empty(:x:) emg emy)
single(t :: %) = fst (singlee(t :: x))
O Tupling works without modification of the compiler.
O It is extremely verbose and looks complicated.

Translation A: Tupling

Since we need both single and empty in the definition of single, we
could define both functions at the same time, as a pair.
singlee(Unit) = (A(Unit,v) — FMapUnit (Just v)
,empty(Unit))
singlee(:+:) (sia, emg) (siy, emy)
= (Ax — case x of
(Inl a,v) — FMapSum (Pair (siz (a,v)) emy)
(Inr b,v) — FMapSum (Pair em, (si, (b,v)))
Jempty(:+:) emg emy)
singlee(:x:) (siq, emy) (siy, emy)
= (A(a:x:b,v) — FMapProd (sig (a,siy (b,0)))
,empty(:x:) emg emy)
single(t :: %) = fst (singlee(t ::))
O Tupling works without modification of the compiler.
O It is extremely verbose and looks complicated.

O The approach is not possible on the type-level.

Translation B: Dependencies

Since recently, the Generic Haskell compiler supports dependencies
between generic functions (and type-indexed types):

single(Unit) (Unit,v) = FMapUnit (Just v)

single(:+:) si, s (Inla,0) = FMapSum (Pair (sis (a,v)) emy)
single(:+:) si, sip (Inr b,v) = FMapSum (Pair em, (si, (b,0)))
single(:X:) sig siy (a:x:b,v) = FMapProd (si, (a,siy (b v)))

Translation B: Dependencies

Since recently, the Generic Haskell compiler supports dependencies
between generic functions (and type-indexed types):

dependency single < single empty

single(Unit) (Unit,v) = FMapUnit (Just v)

single(:+:) siq emy siy emy (Inl a,v) = FMapSum (Pair (si, (a,v)) emy)
single(:+:) siz emy si, emy (Inr b,v) = FMapSum (Pair em, (si (b,0)))
single(:x:) siq emy siy emy, (a:x:b,v) = FMapProd (siq (a,si, (b,0)))

O The dependency line specifies that single, in the :4: and : x:
cases, gets extra arguments for both single and empty (in that
order).

Translation B: Dependencies

Since recently, the Generic Haskell compiler supports dependencies
between generic functions (and type-indexed types):

dependency single < single empty

single(Unit) (Unit,v) = FMapUnit (Just v)

single(:+:) siq emy siy emy (Inl a,v) = FMapSum (Pair (si, (a,v)) emy)
single(:+:) siz emy si, emy (Inr b,v) = FMapSum (Pair em, (si (b,0)))
single(:x:) siq emy siy emy, (a:x:b,v) = FMapProd (siq (a,si, (b,0)))

O The dependency line specifies that single, in the :4: and : x:
cases, gets extra arguments for both single and empty (in that
order).

O A call such as single(List Int) will no longer be translated into
single(List) (single(Int)), but into
single(List) (single(Int)) (empty(Int)), reflecting the
dependency.

Translation B: Dependencies

Since recently, the Generic Haskell compiler supports dependencies
between generic functions (and type-indexed types):

dependency single < single empty

single(Unit) (Unit,v) = FMapUnit (Just v)

single(:+:) siq emy siy emy (Inl a,v) = FMapSum (Pair (si, (a,v)) emy)
single(:+:) siz emy si, emy (Inr b,v) = FMapSum (Pair em, (si (b,0)))
single(:x:) siq emy siy emy, (a:x:b,v) = FMapProd (siq (a,si, (b,0)))

O The dependency line specifies that single, in the :4: and : x:
cases, gets extra arguments for both single and empty (in that
order).

O A call such as single(List Int) will no longer be translated into
single(List) (single(Int)), but into
single(List) (single(Int)) (empty(Int)), reflecting the
dependency.

O A dependency line could easily be inferred automatically if
explicit recursion is used.

Where are we now?

O

g

With explicit recursion, a generic function still consists of
multiple cases for different type arguments.

The type arguments are no longer just names of known types
or type constructors (such as (:+:) or ([])).

They are names of types saturated with type variables (such as
(a:+:b) or ([a]).

One can think about the type variables as implicitly abstracted
(i.e. (Aab.a:+:b) or Aa.[a]), so the type arguments still have
different kinds.

We can refer to multiple generic functions on the right hand
side, not only recursively to the one we are defining.

The compiler will translate the function into an implicitly
recursive function with dependencies.

Where are we now?

O

g

With explicit recursion, a generic function still consists of
multiple cases for different type arguments.

The type arguments are no longer just names of known types
or type constructors (such as (:+:) or ([])).

They are names of types saturated with type variables (such as
(a:+:b) or ([a]).

One can think about the type variables as implicitly abstracted
(i.e. (Aab.a:+:b) or Aa.[a]), so the type arguments still have
different kinds.

We can refer to multiple generic functions on the right hand
side, not only recursively to the one we are defining.

The compiler will translate the function into an implicitly
recursive function with dependencies.

But what about the types of the generic functions?

What about the types?

What about the types?

O We have ignored the types of the generic functions so far.

What about the types?

O We have ignored the types of the generic functions so far.
O But dependency lines affect the types of generic functions.

What about the types?

O We have ignored the types of the generic functions so far.
O But dependency lines affect the types of generic functions.

Let’s look at our example single:

type Single((x) t = Vo.(t,v) — FMap(t) v
type Single(x — k') t = Vu.Single(k) u — Empty(x)) u — Single(x") (t u)

What about the types?

O We have ignored the types of the generic functions so far.
O But dependency lines affect the types of generic functions.

Let’s look at our example single:

type Single((x) t = Vo.(t,v) — FMap(t) v
type Single(x — k') t = Vu.Single(k) u — Empty(x) u — Single(x") (t u)

What about the types?

O We have ignored the types of the generic functions so far.
O But dependency lines affect the types of generic functions.

Let’s look at our example single:

type Single((x) t = Vo.(t,v) — FMap(t) v
type Single(x — k') t = Vu.Single(k) u — Empty(x) u — Single(x") (t u)

O The extra arguments are expected in the order that the
dependency line specifies.

What about the types?

O We have ignored the types of the generic functions so far.
O But dependency lines affect the types of generic functions.

Let’s look at our example single:

type Single((x)) t = Yo.(t,v) — FMap(t) v
type Single(x — k') t = Vu.Single(k) u — Empty(x) u — Single(x") (t u)

O The extra arguments are expected in the order that the
dependency line specifies.

O If we let the compiler infer dependencies automatically, we
cannot know that order.

What about the types?

O We have ignored the types of the generic functions so far.
O But dependency lines affect the types of generic functions.

Let’s look at our example single:

type Single((x)) t = Yo.(t,v) — FMap(t) v
type Single(x — k') t = Vu.Single(k) u — Empty(x) u — Single(x") (t u)

O The extra arguments are expected in the order that the
dependency line specifies.

O If we let the compiler infer dependencies automatically, we
cannot know that order.

O We need (at the user level) a type system that can deal with
multiple dependencies without expressing them by function
types in a specific order.

A type system with named arguments

dependency single < single empty
type Single((x)) t = Vu.(t,v) — FMap(t) v
type Single(x — k') t = Vu.Single((x)) u

— Empty () u

— Single(k") (t u)
single(t :: k) i Single((k)) t

0O We will transform this type stepwise.

A type system with named arguments

dependency single < single empty
type Single((x)) t =Vo.(t,v) — FMap(t) v
type Single(x — k') t = Vu.Single((x)) u

— Empty () u

— Single(k") (t u)
single(t :: k) i Single((k)) t

0O We will transform this type stepwise.

dependency single «— single empty
type Single((x)) t =Vo.(t,v) — FMap(t) v
type Single(x — k') t = Vu.Single(x)) u

— Empty (x) u

— Single(k") (t u)
single(t :: k) i Single((k) t

A type system with named arguments

dependency single < single empty
type Single((x)) t =Vo.(t,v) — FMap(t) v
type Single(x — k') t = Vu.Single((x)) u

— Empty () u

— Single(k") (t u)
single(t :: k) i Single((k)) t

O We add an extra type argument to the kind indexed type.

dependency single «— single empty
type Single((x)) t =Vo.(t,v) — FMap(t) v
type Single(x — k') t = Vu.Single(x)) u

— Empty (x) u

— Single(k") (t u)
single(t :: k) i Single((k) t

A type system with named arguments

dependency single < single empty
type Single((x)) t =Vo.(t,v) — FMap(t) v
type Single(x — k') t = Vu.Single((x)) u

— Empty () u

— Single(k") (t u)
single(t :: k) i Single((k)) t

O We replace the dependency by a dependency constraint.

dependency single < single empty
type Single((x)) (s) t =Vo.(t,v) — FMap(t) v
type Single(x — k") (Aa.s) t = Vu.Single(x) (a) u
— Empty (k) (a) u
— Single((")(s) (
single(t :: k) i Single((k) (t) t

tu)

A type system with named arguments

dependency single < single empty
type Single((x)) t =Vo.(t,v) — FMap(t) v
type Single(x — k') t = Vu.Single((x)) u

— Empty () u

— Single(k") (t u)

single(t :: k) i Single((k)) t

0 The dependency line is now superfluous.

dependency single «— single empty

type Single((x)) (s) ¢ =Vo.(t,v) — FMap(t) v

type Single(x — ') (Aa.s) t = Vu.(single(a) :: Single(x)(a) u
o) & i)
) = Single((") (s) (t u)

single(t :: k) i Single((k) (t)

A type system with named arguments

dependency single < single empty
type Single((x)) t =Vo.(t,v) — FMap(t) v
type Single(x — k') t = Vu.Single((x)) u

— Empty () u

— Single(k") (t u)

single(t :: k) i Single((k)) t

0 The dependency line is now superfluous.

type Single((x)) (s) ¢ =Vo.(t,v) — FMap(t) v

type Single(x — k') (Aa.s) t = Vu.(single(a) :: Single(x){(a) u
o) & i)
) = Single(x') (s) (t u)

single(t :: k) i Single((k) (t)

Dependency constraints by example

type SShallow((x))(s) ¢ =t — String

type SShallow((k — «')(Aa.s) t = Vu.(showEllipsis{a) :: SEllipsis () (a) u
, showRecord(a) :: SRecord (k) (a) u
, showShallow(a) :: SShallow{(x)) (a) u
) = SShallow{x’){s) (t u)

showShallow(t :: k) :: SShallow (k) (t) t

Dependency constraints by example

type SShallow((x))(s) ¢ =t — String

type SShallow((k — «')(Aa.s) t = Vu.(showEllipsis{a) :: SEllipsis () (a) u
, showRecord (a) :: SRecord (k) (a) u
, showShallow(a) :: SShallow{(x)) (a) u
) = SShallow{x’){s) (t u)

showShallow(t :: k) :: SShallow (k) (t) t

showShallow((Int, Fix [])) :: (Int,Fix []) — String

showShallow(Either a [(a,b)]) :: Vu v.
(showEllipsis(a) :: SEllipsis(x)) (a
, showRecord(a) :: SRecord (x) (a) u
, showShallow(a) :: SShallow () (
, showEllipsis(b) :: SEllipsis{(x)) (a
, showRecord(b) :: SRecord((x)) (a) v
, showShallow(b) :: SShallow ((*)) (a) v
) = SShallow{{x) (Either a [b]) (E

)u
Y u

)

Either a [b])

Satisfying dependency constraints

O Dependency constraints can be satisfied in any order in let
bindings:

let showRecord(a) ns = show ns
showShallow(a) ns = showShallow([Int]) ns
showEllipsis(a) ns = "<sum:" +H sum ns + ">"
in showShallow (MyRatherComplexTree a) tree
i [Int] — String

(Skip to Summary) (Skip to Conclusions)

Satisfying dependency constraints

O Dependency constraints can be satisfied in any order in let
bindings:

let showRecord(a) ns = show ns
showShallow(a) ns = showShallow([Int]) ns
showEllipsis(a) ns = "<sum:," H sum ns H ">"
in showShallow (MyRatherComplexTree a) tree
i [Int] — String

0 Dependency constraints are propagated and thus need not be
satisfied immediately:

let showEllipsis(a) x ="..."
in compare (showShallow(TreeA a) tree_a) (showShallow(TreeB a) tree_b)
it Yu.(showRecord(a) :: u — String
, showShallow(a) :: u — String
) = Ordering

O This behaviour is reminiscent of implicit parameters.

(Skip to Summary) (Skip to Conclusions)

Dependency constraints, slightly formalised

We extend the type language by types qualified with dependency
constraints.

Types =

| (D)=t
Dependency constraint set D ::= ¢

| n(a)::t,D

Dependency constraints can be reordered.

Dependency constraints can be satisfied in a let binding:
ex(n{a)y::t,D) =t ¢t
let n(a) =¢ ine: (D) =t/

They are propagated elsewhere:
ex(D)=t —t (D)=t
(ee):: (merge (D,D')) =t

Summary

O

O

We can write generic functions using explicit recursion.
Internally, it is translated into an equivalent implicitly
recursive function.

The types of generic functions remain kind-indexed.

Being able to recurse on other generic functions by name in the
right hand side makes a large class of generic functions much
easier to write.

Having a type system with dependency constraints opens up
the possibility to infer the {k — «’}))-line in kind-indexed types.
Only the simple (kind *) type needs to be written.

(Skip to Conclusions)

Summary

O

We can write generic functions using explicit recursion.

O Internally, it is translated into an equivalent implicitly
recursive function.

O

The types of generic functions remain kind-indexed.

O Being able to recurse on other generic functions by name in the
right hand side makes a large class of generic functions much
easier to write.

0 Having a type system with dependency constraints opens up
the possibility to infer the {k — «’}))-line in kind-indexed types.
Only the simple (kind *) type needs to be written.

Differences to Ralf Hinze’s POPL-style

O Generic definitions always work on the same type language.
O There are less restrictions.

(Skip to Conclusions)

Explicit recursion and default cases

Default cases (formerly called emphcopy lines) can be used to extend
or modify existing generic function by providing new cases.

equal(Unit) Unit Unit = True

equal (:+:) eq, eq, (Inl ay) (Inl ay) =eq, aj ap

equal(:+:) eq, eqy, (Inr by) (Inr by) =eq, by by

equal (:+:) eq, eq, — = False

equal (:x:) eq, eq), (a1 :x:by) (ap:x:by) =eq, a1 ap A eqy, by by
rEqual{Range) _ _ = True

rEqual(t) = equal (t)

O With rEqual, ranges are ignored for comparision everywhere.

(Skip to Conclusions)

Explicit recursion and default cases

Default cases (formerly called emphcopy lines) can be used to extend
or modify existing generic function by providing new cases.

equal(Unit) Unit Unit = True

equal{a:+:b) (Inl ay) (Inl ap) = equal(a) aj ap

equal{a:+:b) (Inr by) (Inr by) = equal (b) by by

equal(a:+:b) _ _ = False

equal{a:x:b) (ay:x:b1) (ay:x:by) = equal(a) a1 ay N equal(b) by by
rEqual{Range) _ _ = True

rEqual(t) = equal (t)

O With rEqual, ranges are ignored for comparision everywhere.
O With explicit recursion, this is no longer obvious.

(Skip to Conclusions)

Explicit recursion and default cases

Default cases (formerly called emphcopy lines) can be used to extend
or modify existing generic function by providing new cases.

equal(Unit) Unit Unit = True

equal{a:+:b) (Inl ay) (Inl ap) = this(a) a1 ap

equal{a:+:b) (Inr by) (Inr by) = this(b) by by

equal(a:+:b) _ _ = False

equal{a:x:b) (ay:x:b1) (ay:x:by) = this(a) a; ay A this(b) by by
rEqual{Range) _ _ = True

rEqual(t) = equal(t)

O With rEqual, ranges are ignored for comparision everywhere.

O With explicit recursion, this is no longer obvious, but different
possibilities exist.

(Skip to Conclusions)

Explicit recursion and generic abstraction

Generic abstractions are Generic Haskell’s way of defining one-line
generic functions in terms of others, thereby restricting the kind.

mapTwice(t :: x — x) f = gmap(t) (f of)

Explicit recursion and generic abstraction

Generic abstractions are Generic Haskell’s way of defining one-line
generic functions in terms of others, thereby restricting the kind.

mapTwice(t :: x — x) f = gmap(t) (f of)

O Currently, generic abstractions are essentially inlined by the
compiler, leading to a non-compositional specialisation for
generic abstractions.

Explicit recursion and generic abstraction

Generic abstractions are Generic Haskell’s way of defining one-line
generic functions in terms of others, thereby restricting the kind.

mapTwice(t :: x — x) f = gmap(t) (f of)

O Currently, generic abstractions are essentially inlined by the
compiler, leading to a non-compositional specialisation for
generic abstractions.

O With the dependency constraint type system, the function can

be seen as depending on the definition of gmap, thereby
becoming an ordinary polymorphic function in the translation.

Conclusions

O The proposed syntax makes it possible to write generic
functions in Generic Haskell in a more intuitive way.

O The new model works fine in conjunction with other features
of Generic Haskell, such as default cases or generic abstraction,
even simplifying the latter.

Conclusions

O The proposed syntax makes it possible to write generic
functions in Generic Haskell in a more intuitive way.

O The new model works fine in conjunction with other features
of Generic Haskell, such as default cases or generic abstraction,
even simplifying the latter.

Implementation

0 The dependency feature is implemented, but the rest is not.
The type inferencer is still a challenge.

Conclusions

O The proposed syntax makes it possible to write generic
functions in Generic Haskell in a more intuitive way.

O The new model works fine in conjunction with other features
of Generic Haskell, such as default cases or generic abstraction,
even simplifying the latter.

Implementation

0 The dependency feature is implemented, but the rest is not.
The type inferencer is still a challenge.

Future work

O Simplifications: can default cases and generic abstractions be
unified?

O Possible extensions such as complex type patterns allow even
more expressivity.

