
Contracts in Trinity

Andres Löh

joint work with Ralf Hinze and Andreas Schmitz

Universität Bonn

April 13, 2007

About me

PhD at Utrecht University, 2004: “Exploring Generic Haskell”

currently PostDoc at Bonn University, working with Ralf Hinze

interests:

functional programming (Haskell),
polytypic / datatype-generic programming,
type systems

Andres Löh Contracts in Trinity 2

Overview

1 Trinity
Background
Examples

2 Contracts
Motivation
Syntax
Examples
Semantics

3 Conclusions

Andres Löh Contracts in Trinity 3

History of Trinity

While teaching “Concepts of Programming Languages” to third- and
fourth-year students, Ralf Hinze devised fragments of a language
together with static and dynamic semantics.

An idea came up at Bonn university to redesign the curriculum and
have an introductory first-year course on PL concepts.

Another idea came up that while it would be ok to reuse the work
already done for the other course, it would be extremely nice to have
an implementation for the students to play with, to make the course
less theoretical.

Andres Löh Contracts in Trinity 4

History of Trinity – contd.

I joined the project at that point. With the implementation came a
redesign of most language concepts.

By now, the course has passed, with mixed reactions from the
students. The language is still in development and will probably be
used for other courses and projects.

This talk is also about one of these projects: A master student is
currently working on adding contracts to Trinity.

Andres Löh Contracts in Trinity 5

Design goals of Trinity

Different paradigms:

value-oriented (functional) programming
effect-oriented (imperative) programming
object-oriented programming

Simple, orthogonal concepts. No artificial restrictions.

Minimalistic. (Writing large programs is not a goal.)

Types!

Clearly defined static and dynamic semantics.

Presentable in an incremental way.

Andres Löh Contracts in Trinity 6

Design goals of Trinity

Different paradigms:

value-oriented (functional) programming
effect-oriented (imperative) programming
object-oriented programming

Simple, orthogonal concepts. No artificial restrictions.

Minimalistic. (Writing large programs is not a goal.)

Types!

Clearly defined static and dynamic semantics.

Presentable in an incremental way.

Andres Löh Contracts in Trinity 6

Design goals of Trinity

Different paradigms:

value-oriented (functional) programming
effect-oriented (imperative) programming
object-oriented programming

Simple, orthogonal concepts. No artificial restrictions.

Minimalistic. (Writing large programs is not a goal.)

Types!

Clearly defined static and dynamic semantics.

Presentable in an incremental way.

Andres Löh Contracts in Trinity 6

Design goals of Trinity

Different paradigms:

value-oriented (functional) programming
effect-oriented (imperative) programming
object-oriented programming

Simple, orthogonal concepts. No artificial restrictions.

Minimalistic. (Writing large programs is not a goal.)

Types!

Clearly defined static and dynamic semantics.

Presentable in an incremental way.

Andres Löh Contracts in Trinity 6

Design goals of Trinity

Different paradigms:

value-oriented (functional) programming
effect-oriented (imperative) programming
object-oriented programming

Simple, orthogonal concepts. No artificial restrictions.

Minimalistic. (Writing large programs is not a goal.)

Types!

Clearly defined static and dynamic semantics.

Presentable in an incremental way.

Andres Löh Contracts in Trinity 6

Design goals of Trinity

Different paradigms:

value-oriented (functional) programming
effect-oriented (imperative) programming
object-oriented programming

Simple, orthogonal concepts. No artificial restrictions.

Minimalistic. (Writing large programs is not a goal.)

Types!

Clearly defined static and dynamic semantics.

Presentable in an incremental way.

Andres Löh Contracts in Trinity 6

The Result

We reinvented ML . . .

. . . with some syntactic influences from Haskell.

. . . with some variations in the type system.

Natural numbers are the only built-in numerical type.

Andres Löh Contracts in Trinity 7

The Result

We reinvented ML . . .

. . . with some syntactic influences from Haskell.

. . . with some variations in the type system.

Natural numbers are the only built-in numerical type.

Andres Löh Contracts in Trinity 7

The Result

We reinvented ML . . .

. . . with some syntactic influences from Haskell.

. . . with some variations in the type system.

Natural numbers are the only built-in numerical type.

Andres Löh Contracts in Trinity 7

The Result

We reinvented ML . . .

. . . with some syntactic influences from Haskell.

. . . with some variations in the type system.

Natural numbers are the only built-in numerical type.

Andres Löh Contracts in Trinity 7

Example – factorial

function factorial (n : Nat) : Nat =
if n 0 then 1

else n ∗ factorial (n− 1)

Nat, not Int . . .

Limited type inference: type annotations required for all recursive
functions.

Andres Löh Contracts in Trinity 8

Example – factorial

function factorial (n : Nat) : Nat =
if n 0 then 1

else n ∗ factorial (n− 1)

Nat, not Int . . .

Limited type inference: type annotations required for all recursive
functions.

Andres Löh Contracts in Trinity 8

Example – factorial, imperatively

local
open System.Control

in
function factorial (n : Nat) : Nat =

let
val result = ref 1

in
for (1, n) (fun i ⇒ result := ! result ∗ i);
! result

end
end

Modules and references similar to ML.

‘for’ is a function defined in System.Control.

Andres Löh Contracts in Trinity 9

Example – factorial, imperatively

local
open System.Control

in
function factorial (n : Nat) : Nat =

let
val result = ref 1

in
for (1, n) (fun i ⇒ result := ! result ∗ i);
! result

end
end

Modules and references similar to ML.

‘for’ is a function defined in System.Control.

Andres Löh Contracts in Trinity 9

Example – data types

data Tree 〈a〉 = Empty
| Node (Tree 〈a〉, a,Tree 〈a〉)

data Maybe 〈a〉 = Nothing
| Just a

Haskell-inspired syntax.

Constructors have zero or one argument.

Type application: generally angle brackets.

Andres Löh Contracts in Trinity 10

Example – data types

data Tree 〈a〉 = Empty
| Node (Tree 〈a〉, a,Tree 〈a〉)

data Maybe 〈a〉 = Nothing
| Just a

Haskell-inspired syntax.

Constructors have zero or one argument.

Type application: generally angle brackets.

Andres Löh Contracts in Trinity 10

Example – polymorphism

function leaf 〈a : Type〉 (elem : a) = Node (Empty, elem,Empty)

val a-bst =
Node (Node (leaf ("Andres", "U Bonn"),

("John", "U Chicago"),
leaf ("Matthias", "TTI-C")),

("Ralf", "U Bonn"),
leaf ("Robby", "U Chicago"))

Polymorphism is introduced explicitly via type abstractions (but
constructors are implicitly polymorphic).

leaf : 〈a : Type〉 → a→ Tree 〈a〉
If a polymorphic functions is applied to a value, missing type
arguments are inferred.

Equivalent to the value restriction.

Andres Löh Contracts in Trinity 11

Example – polymorphism

function leaf 〈a : Type〉 (elem : a) = Node (Empty, elem,Empty)

val a-bst =
Node (Node (leaf ("Andres", "U Bonn"),

("John", "U Chicago"),
leaf ("Matthias", "TTI-C")),

("Ralf", "U Bonn"),
leaf ("Robby", "U Chicago"))

Polymorphism is introduced explicitly via type abstractions (but
constructors are implicitly polymorphic).

leaf : 〈a : Type〉 → a→ Tree 〈a〉
If a polymorphic functions is applied to a value, missing type
arguments are inferred.

Equivalent to the value restriction.

Andres Löh Contracts in Trinity 11

Type abbreviations

type Environment 〈a, b〉 = List 〈(a, b)〉
type Int = (Nat,Nat)

No new data types are generated.

No recursion.

Andres Löh Contracts in Trinity 12

Type abbreviations

type Environment 〈a, b〉 = List 〈(a, b)〉
type Int = (Nat,Nat)

No new data types are generated.

No recursion.

Andres Löh Contracts in Trinity 12

Other features

Simple IO functions

Records

Arrays

Exceptions

Continuations

Objects

Modules, Signatures, Functors (not as advanced as in ML)

Andres Löh Contracts in Trinity 13

Overview

1 Trinity
Background
Examples

2 Contracts
Motivation
Syntax
Examples
Semantics

3 Conclusions

Andres Löh Contracts in Trinity 14

Motivation

An important criterion for the quality of software is reliability:

correctness: the software does what it is supposed to do

robustness: the software can deal with unexpected situations

There are different approaches in order to improve the reliability of
software:

formal proof of correctness,

type systems (static, dynamic),

systematic testing,

“design by contract”.

These approaches are not competing. They can be used simultaneously.

Andres Löh Contracts in Trinity 15

Motivation

An important criterion for the quality of software is reliability:

correctness: the software does what it is supposed to do

robustness: the software can deal with unexpected situations

There are different approaches in order to improve the reliability of
software:

formal proof of correctness,

type systems (static, dynamic),

systematic testing,

“design by contract”.

These approaches are not competing. They can be used simultaneously.

Andres Löh Contracts in Trinity 15

Motivation

An important criterion for the quality of software is reliability:

correctness: the software does what it is supposed to do

robustness: the software can deal with unexpected situations

There are different approaches in order to improve the reliability of
software:

formal proof of correctness,

type systems (static, dynamic),

systematic testing,

“design by contract”.

These approaches are not competing. They can be used simultaneously.

Andres Löh Contracts in Trinity 15

Design space

static checking dynamic checking

simple properties static types dynamic types

complex properties theorem proving contracts

Andres Löh Contracts in Trinity 16

Contracts in Trinity

Contracts are integrated into the type system.

Types have a static and a dynamic component.

Contract types are translated into run-time checks.

Contracts can be applied to higher-order functions and to
polymorphic functions.

Abstractions can be defined.

Andres Löh Contracts in Trinity 17

Syntax: predicate contracts

A contract specifies a desired property. For example:

type Pos = { i : Nat | i
 0 }
type True 〈a〉 = { : a | true }
type Nonempty 〈a〉 = { x : List 〈a〉 | length x 6 0 }

Formation rule for predicate contracts:

Σ ` τ : Type Σ, x : τ ` e : Bool

Σ ` { x : τ | e } : Type

Andres Löh Contracts in Trinity 18

Syntax: predicate contracts

A contract specifies a desired property. For example:

type Pos = { i : Nat | i
 0 }
type True 〈a〉 = { : a | true }
type Nonempty 〈a〉 = { x : List 〈a〉 | length x 6 0 }

Formation rule for predicate contracts:

Σ ` τ : Type Σ, x : τ ` e : Bool

Σ ` { x : τ | e } : Type

Andres Löh Contracts in Trinity 18

Parameterized contracts

Type synonyms now also be parameterized over values.

type Between (m : Nat) (n : Nat) = { x : Nat | m 6 x && x 6 n }

Recall: we always use angle brackets for type application, and no
brackets for expression application.

Andres Löh Contracts in Trinity 19

Syntax: assigning contracts

We can assert a contract by annotating an expression:

function factors n = filter (fun i ⇒ n % i 0) (between (1, n))

type Prime = { n : Nat | eqList (fun x y ⇒ x y)
(factors n) (Cons (1,Cons (n,Nil))) }

val mersenne = power (2, 30402457)− 1 : Prime

Andres Löh Contracts in Trinity 20

Static and dynamic checking

Each type has a static and a dynamic part. For a predicate contract such
as

type Prime = { n : Nat | eqList (fun x y ⇒ x y)
(factors n) (Cons (1,Cons (n,Nil))) }

the static part is Nat.

The dynamic part is a code transformation that wraps the expression in
a run-time test:

power (2, 30402457)− 1

is transformed into

(fun n ⇒ if eqList (fun x y ⇒ x y)
(factors n) (Cons (1,Cons (n,Nil))))

then n
else throw Contract)

(power (2, 30402457)− 1)

Andres Löh Contracts in Trinity 21

Static and dynamic checking

Each type has a static and a dynamic part. For a predicate contract such
as

type Prime = { n : Nat | eqList (fun x y ⇒ x y)
(factors n) (Cons (1,Cons (n,Nil))) }

the static part is Nat.

The dynamic part is a code transformation that wraps the expression in
a run-time test:

power (2, 30402457)− 1

is transformed into

(fun n ⇒ if eqList (fun x y ⇒ x y)
(factors n) (Cons (1,Cons (n,Nil))))

then n
else throw Contract)

(power (2, 30402457)− 1)

Andres Löh Contracts in Trinity 21

Syntax: contracts on functions

Contracts can be embedded into type expressions, for example into
function types:

type F 〈a〉 = Nonempty 〈a〉 → Pos

A function with type F 〈a〉 requires its argument to be a non-empty list
with element of type a and ensures that its result is a positive number;
Nonempty is the precondition, Pos the postcondition.

Andres Löh Contracts in Trinity 22

Syntax: contracts on functions – contd.

The postcondition may depend on the function argument:

type Inc = forall (n : Nat)⇒{ r : Nat | n � r }

The variable n is bound in the construct and may be used in predicate
contracts to the right.

Formation rule for dependent function contracts:

Σ ` τ : Type Σ, x : τ ` τ ′ : Type

Σ ` forall (x : τ)⇒ τ ′ : Type

Andres Löh Contracts in Trinity 23

Syntax: contracts on functions – contd.

The postcondition may depend on the function argument:

type Inc = forall (n : Nat)⇒{ r : Nat | n � r }

The variable n is bound in the construct and may be used in predicate
contracts to the right.

Formation rule for dependent function contracts:

Σ ` τ : Type Σ, x : τ ` τ ′ : Type

Σ ` forall (x : τ)⇒ τ ′ : Type

Andres Löh Contracts in Trinity 23

Contracts: obligations, benefits, violations

A function contract τ1 → τ2 is like a business contract, with obligations
and benefits for both parties.

party obligations benefits

client ensure precondition τ1 require postcondition τ2

supplier ensure postcondition τ2 require precondition τ1

The obligations of one party are the benefits of the other.

If a contract is violated at runtime, the software is erroneous.

If the precondition is violated, the client is to blame.

If the postcondition is violated, the supplier is to blame.

Andres Löh Contracts in Trinity 24

Contracts: obligations, benefits, violations

A function contract τ1 → τ2 is like a business contract, with obligations
and benefits for both parties.

party obligations benefits

client ensure precondition τ1 require postcondition τ2

supplier ensure postcondition τ2 require precondition τ1

The obligations of one party are the benefits of the other.

If a contract is violated at runtime, the software is erroneous.

If the precondition is violated, the client is to blame.

If the postcondition is violated, the supplier is to blame.

Andres Löh Contracts in Trinity 24

Contract violations: first-order functions

type PosInc = forall (n : Pos)⇒{ r : Pos | n � r }

val inc = (fun n ⇒ n + 1) : PosInc
val dec = (fun n ⇒ n− 1) : PosInc

Another possibility to define inc is

function inc (n : Pos) : { r : Pos | n � r } = n + 1

Note: Contract violations are only detected if a value is used outside of
its specification.

Andres Löh Contracts in Trinity 25

Contract violations: first-order functions

type PosInc = forall (n : Pos)⇒{ r : Pos | n � r }

val inc = (fun n ⇒ n + 1) : PosInc
val dec = (fun n ⇒ n− 1) : PosInc

Another possibility to define inc is

function inc (n : Pos) : { r : Pos | n � r } = n + 1

Note: Contract violations are only detected if a value is used outside of
its specification.

Andres Löh Contracts in Trinity 25

Contract violations: first-order functions

type PosInc = forall (n : Pos)⇒{ r : Pos | n � r }

val inc = (fun n ⇒ n + 1) : PosInc
val dec = (fun n ⇒ n− 1) : PosInc

Another possibility to define inc is

function inc (n : Pos) : { r : Pos | n � r } = n + 1

Note: Contract violations are only detected if a value is used outside of
its specification.

Andres Löh Contracts in Trinity 25

Function contracts versus flat contracts

It is possible to define flat function contracts:

type PreserveZero = {f : Nat→ Nat | f 0 0}

Andres Löh Contracts in Trinity 26

Syntax: contracts in datatypes

In principle, contract types can be embedded arbitrarily in other types:

List 〈Pos〉

describes a list of positive numbers. In general, this requires ‘mapping’ the
assertion over the elements of arbitrary data structures (polytypic
programming).

Formation rule for contract application:

Σ ` τ : Type→ κ Σ ` τ ′ : Type

Σ ` τ 〈τ ′〉 : κ

Andres Löh Contracts in Trinity 27

Syntax: contracts in datatypes

In principle, contract types can be embedded arbitrarily in other types:

List 〈Pos〉

describes a list of positive numbers. In general, this requires ‘mapping’ the
assertion over the elements of arbitrary data structures (polytypic
programming).

Formation rule for contract application:

Σ ` τ : Type→ κ Σ ` τ ′ : Type

Σ ` τ 〈τ ′〉 : κ

Andres Löh Contracts in Trinity 27

Syntax: composing contracts

Contracts can be combined using “and”:

Pos & { n : Nat | n 6 4711 }

Formation rule for contract composition:

Σ ` τ : Type Σ ` τ ′ : Type

Σ ` τ & τ ′ : Type

Andres Löh Contracts in Trinity 28

Overview

1 Trinity
Background
Examples

2 Contracts
Motivation
Syntax
Examples
Semantics

3 Conclusions

Andres Löh Contracts in Trinity 29

Example: factorization

Let f ′ be the ‘contracted’ variant of f.

val prime-factors′ = prime-factors
: forall (n : Pos)⇒ List 〈Prime〉& { fs : List 〈Nat〉 | product fs n }

The function prime-factors is an inverse of product. This idiom can be
captured using a ‘higher-order’ function:

type Inverse 〈a, b〉 (f : a→ b) (eq : b→ b→ b) =
forall (x : b)⇒{ y : a | eq (f y) x }

val prime-factors′ = prime-factors
: Pos→ (List 〈Prime〉& Inverse product (fun x y ⇒ x y))

Andres Löh Contracts in Trinity 30

Example: factorization

Let f ′ be the ‘contracted’ variant of f.

val prime-factors′ = prime-factors
: forall (n : Pos)⇒ List 〈Prime〉& { fs : List 〈Nat〉 | product fs n }

The function prime-factors is an inverse of product. This idiom can be
captured using a ‘higher-order’ function:

type Inverse 〈a, b〉 (f : a→ b) (eq : b→ b→ b) =
forall (x : b)⇒{ y : a | eq (f y) x }

val prime-factors′ = prime-factors
: Pos→ (List 〈Prime〉& Inverse product (fun x y ⇒ x y))

Andres Löh Contracts in Trinity 30

Example: until

Polymorphic functions such as until do not need to be treated in any
special way:

function until 〈a〉 (p : a→ Bool) (f : a→ a) (a : a) : a =
if p a then a else until p f (f a)

Type arguments can be inferred, but can also be explicitly supplied.
A polymorphic function can therefore be instantiated with a contract type
(an invariant).

The expression

until 〈Pos〉

is equivalent to

until 〈Nat〉 : (Pos→ Bool)→ (Pos→ Pos)→ Pos→ Pos

Andres Löh Contracts in Trinity 31

Example: until

Polymorphic functions such as until do not need to be treated in any
special way:

function until 〈a〉 (p : a→ Bool) (f : a→ a) (a : a) : a =
if p a then a else until p f (f a)

Type arguments can be inferred, but can also be explicitly supplied.
A polymorphic function can therefore be instantiated with a contract type
(an invariant).

The expression

until 〈Pos〉

is equivalent to

until 〈Nat〉 : (Pos→ Bool)→ (Pos→ Pos)→ Pos→ Pos

Andres Löh Contracts in Trinity 31

Type rules for contracts

Type-checking introduces run-time contract checks, therefore type rules
are of the form:

Σ ` e : σ e′

where σ is a static type, i.e., it does not contain any contract constructs.

We use two built-in functions:

static computes the “static part” of a type

assert computes an expression that asserts a contract

Andres Löh Contracts in Trinity 32

Type rules for contracts

Type-checking introduces run-time contract checks, therefore type rules
are of the form:

Σ ` e : σ e′

where σ is a static type, i.e., it does not contain any contract constructs.

We use two built-in functions:

static computes the “static part” of a type

assert computes an expression that asserts a contract

Andres Löh Contracts in Trinity 32

Type rules for contract – contd.

static 〈τ〉 = σ Σ ` e : σ e′

Σ ` (e : τ) : σ assert 〈τ〉 e′

static 〈τ〉 = σ Σ ` e : 〈a : Type〉 → σ′ e′

Σ ` e 〈τ〉 : σ′ [a 7→ σ] assert 〈σ′ [a 7→ τ]〉 (e′ 〈σ〉)

static 〈Nat〉 = Nat
static 〈{ x : τ | e }〉 = τ
static 〈forall (x : τ)⇒ τ ′〉 = static 〈τ〉 → static 〈τ ′〉

assert 〈Nat〉 = id
assert 〈{ x : τ | e }〉 = fun x ⇒ if e then assert 〈τ〉 x

else throw Contract
assert 〈forall (x : τ)⇒ τ ′〉 = fun f x ⇒ assert 〈τ ′〉 (f (assert 〈τ〉 x))

Andres Löh Contracts in Trinity 33

Type rules for contract – contd.

static 〈τ〉 = σ Σ ` e : σ e′

Σ ` (e : τ) : σ assert 〈τ〉 e′

static 〈τ〉 = σ Σ ` e : 〈a : Type〉 → σ′ e′

Σ ` e 〈τ〉 : σ′ [a 7→ σ] assert 〈σ′ [a 7→ τ]〉 (e′ 〈σ〉)

static 〈Nat〉 = Nat
static 〈{ x : τ | e }〉 = τ
static 〈forall (x : τ)⇒ τ ′〉 = static 〈τ〉 → static 〈τ ′〉

assert 〈Nat〉 = id
assert 〈{ x : τ | e }〉 = fun x ⇒ if e then assert 〈τ〉 x

else throw Contract
assert 〈forall (x : τ)⇒ τ ′〉 = fun f x ⇒ assert 〈τ ′〉 (f (assert 〈τ〉 x))

Andres Löh Contracts in Trinity 33

Type rules for contract – contd.

static 〈τ〉 = σ Σ ` e : σ e′

Σ ` (e : τ) : σ assert 〈τ〉 e′

static 〈τ〉 = σ Σ ` e : 〈a : Type〉 → σ′ e′

Σ ` e 〈τ〉 : σ′ [a 7→ σ] assert 〈σ′ [a 7→ τ]〉 (e′ 〈σ〉)

static 〈Nat〉 = Nat
static 〈{ x : τ | e }〉 = τ
static 〈forall (x : τ)⇒ τ ′〉 = static 〈τ〉 → static 〈τ ′〉

assert 〈Nat〉 = id
assert 〈{ x : τ | e }〉 = fun x ⇒ if e then assert 〈τ〉 x

else throw Contract
assert 〈forall (x : τ)⇒ τ ′〉 = fun f x ⇒ assert 〈τ ′〉 (f (assert 〈τ〉 x))

Andres Löh Contracts in Trinity 33

Type rules for contract – contd.

static 〈τ〉 = σ Σ ` e : σ e′

Σ ` (e : τ) : σ assert 〈τ〉 e′

static 〈τ〉 = σ Σ ` e : 〈a : Type〉 → σ′ e′

Σ ` e 〈τ〉 : σ′ [a 7→ σ] assert 〈σ′ [a 7→ τ]〉 (e′ 〈σ〉)

static 〈Nat〉 = Nat
static 〈{ x : τ | e }〉 = τ
static 〈forall (x : τ)⇒ τ ′〉 = static 〈τ〉 → static 〈τ ′〉

assert 〈Nat〉 = id
assert 〈{ x : τ | e }〉 = fun x ⇒ if e then assert 〈τ〉 x

else throw Contract
assert 〈forall (x : τ)⇒ τ ′〉 = fun f x ⇒ assert 〈τ ′〉 (f (assert 〈τ〉 x))

Andres Löh Contracts in Trinity 33

Overview

1 Trinity
Background
Examples

2 Contracts
Motivation
Syntax
Examples
Semantics

3 Conclusions

Andres Löh Contracts in Trinity 34

Conclusions

We have introduced a type system for contracts.

Trinity is a very beautiful language,

contracts are an integral part of Trinity (contracts have a much better
status than for example in Eiffel),

implemented (still ongoing work, but available on request),

we can define our own abstractions,

higher-order functions are handled in a natural way,

polymorphic functions can be instantiated to invariants,

data types can be treated generically,

future work: perform some contract checks statically and thereby
optimize the contracts,

future work: formalize the metatheory of Trinity,

future work: control effects in contracts

Andres Löh Contracts in Trinity 35

The End

{ x : () | let function r () : Bool = put-line "Thank you"; r () in r () end }

Andres Löh Contracts in Trinity 36

Example: sorting

function fast-sort′ 〈a〉 (cmp : a→ a→ Ordering)
: List 〈a〉 → Sorted 〈a〉 cmp =

fast-sort cmp

The contract Sorted restricts lists to sorted lists.

We have not (yet) specified that the output list is a permutation of the
input list.

Andres Löh Contracts in Trinity 37

Example: sorting

function fast-sort′ 〈a〉 (cmp : a→ a→ Ordering)
: List 〈a〉 → Sorted 〈a〉 cmp =

fast-sort cmp

The contract Sorted restricts lists to sorted lists.

We have not (yet) specified that the output list is a permutation of the
input list.

Andres Löh Contracts in Trinity 37

Example: sorting, continued

Let bag : List 〈a〉 → Bag 〈a〉 be a function that turns a list into a bag.

function fast-sort′ 〈a〉 (cmp : a→ a→ Ordering)
: forall (x : List 〈a〉) ⇒

(Sorted 〈a〉 cmp
& { s : List 〈a〉 | eqBag (cmp2eq cmp) (bag x) (bag s) })

= fast-sort cmp

The function fast-sort does not change the number of occurrences of the
elements. This idiom can again be captured by a ‘higher-order’ contract:

type Preserve 〈a, b〉 (eq : b→ b→ Bool) (f : a→ b) =
forall (x : a)⇒{ y : a | eq (f x) (f y) }

function fast-sort′ 〈a〉 (cmp : a→ a→ Ordering)
: (List 〈a〉 → Sorted 〈a〉) & Preserve (cmp2eq cmp) bag
= fast-sort cmp

A weaker assertion: Preserve (cmp2eq cmp) length.

Andres Löh Contracts in Trinity 38

Example: sorting, continued

Let bag : List 〈a〉 → Bag 〈a〉 be a function that turns a list into a bag.

function fast-sort′ 〈a〉 (cmp : a→ a→ Ordering)
: forall (x : List 〈a〉) ⇒

(Sorted 〈a〉 cmp
& { s : List 〈a〉 | eqBag (cmp2eq cmp) (bag x) (bag s) })

= fast-sort cmp

The function fast-sort does not change the number of occurrences of the
elements. This idiom can again be captured by a ‘higher-order’ contract:

type Preserve 〈a, b〉 (eq : b→ b→ Bool) (f : a→ b) =
forall (x : a)⇒{ y : a | eq (f x) (f y) }

function fast-sort′ 〈a〉 (cmp : a→ a→ Ordering)
: (List 〈a〉 → Sorted 〈a〉) & Preserve (cmp2eq cmp) bag
= fast-sort cmp

A weaker assertion: Preserve (cmp2eq cmp) length.

Andres Löh Contracts in Trinity 38

Example: sorting, continued

Let bag : List 〈a〉 → Bag 〈a〉 be a function that turns a list into a bag.

function fast-sort′ 〈a〉 (cmp : a→ a→ Ordering)
: forall (x : List 〈a〉) ⇒

(Sorted 〈a〉 cmp
& { s : List 〈a〉 | eqBag (cmp2eq cmp) (bag x) (bag s) })

= fast-sort cmp

The function fast-sort does not change the number of occurrences of the
elements. This idiom can again be captured by a ‘higher-order’ contract:

type Preserve 〈a, b〉 (eq : b→ b→ Bool) (f : a→ b) =
forall (x : a)⇒{ y : a | eq (f x) (f y) }

function fast-sort′ 〈a〉 (cmp : a→ a→ Ordering)
: (List 〈a〉 → Sorted 〈a〉) & Preserve (cmp2eq cmp) bag
= fast-sort cmp

A weaker assertion: Preserve (cmp2eq cmp) length.
Andres Löh Contracts in Trinity 38

Example: sorting, continued

Alternatively, we can specify fast-sort using a trusted sorting function:

type Is 〈a, b〉 (eq : b→ b→ Bool) =
fun (x : a) ⇒ { y : b | eq y (f x) }

function fast-sort′ 〈a〉 (cmp : a→ a→ Ordering)
: Is (cmp2eq cmp) (trusted-sort 〈a〉)
= fast-sort cmp

Andres Löh Contracts in Trinity 39

	Trinity
	Background
	Examples

	Contracts
	Motivation
	Syntax
	Examples
	Semantics

	Conclusions

