Explicit Recursion
in Generic Haskell

Andres Loh
Universiteit Utrecht
andres@cs.uu.nl

26th March 2003

This is joint work with Dave Clarke and Johan Jeuring.

andres@cs.uu.nl

Overview

O What is Generic Haskell?

O The difference between implicit and explicit recursion
0 How explicit recursion works

O Future possibilities

Generic Haskell

O

An extension to Haskell

O Allows the programmer to define generic functions (and
generic datatypes), i.e. functions indexed by a type argument

O A generic function can be defined inductively over the
structure of datatypes, thus working for all types in a generic
way

O Generic Haskell is implemented as a preprocessor that

translates generic functions into Haskell

O

Translation proceeds by specialisation

O Most of the ideas go back to Ralf Hinze's several papers about
generic programming in Haskell

Example: Generic equality

equal(Unit) Unit Unit = True

equal{a + b) (Inl ay) (Inl ay) = equal{a) aj ap

equal{a + b) (Inr by) (Inr by) = equal(b) by by

equal{a +b) _ _ = False

equal{a x b) (a1,b1) (a2,by) = equal{a) a1 ap A equal(b) by by

O The type arguments are (specially marked).
O Cases are given for a small set of Haskell datatypes:

data Unit = Unit
dataa+b=1Inla|Inrb
dataa x b= (a,b)

(Additional constructs deal with constructor names.)

Generic functions

O d

Generic functions can be specialised to several types.

Special cases for specific datatypes/constructors are possible.
Generic functions can “inherit” cases from other generic
functions.

Other examples of generic functions include: mapping,
ordering, (de)coding, (un)parsing, generic traversals,
operations on type-indexed datatypes.

Implicit versus explicit recursion

Actually, the equality function used to be written differently in
Generic Haskell:

equal(Unit) Unit Unit = True

equal(+) eq, eq, (Inl ay) (Inl ay) =eq, a; ap

equal(+) eq, eq,, (Inr by) (Inr by) = eqy, by by

equal(+) eq, eq, — = False

equal(x) eq, eq, (a1,b1) (a2, b2) =eq, a1 ay A eqy, by by

O Less intuitive, but more general.
O Type arguments are always simple type constructors.
O Kind-indexed type:
equal(t :: %) :: t — + — Bool
equal(t:: x — % — %) ::Va b.(a — a — Bool) — (b — b — Bool)
—tab—tab— Bool

O Type-level application is replaced by value-level application.
equal(f a) = equal(f) (equal(a))

Key idea

Get the nice syntax of explicit recursion,
but keep all advantages of implicit recursion.

Explicit recursion, implicit dictionaries

equal(Unit) Unit Unit = True

equal(+) eq, eq, (Inl ay) (Inl ay) =eq, a1 ap

equal(+) eq, eq;, (Inr by) (Inr by) =eq, by by

equal(+) eq, eq, — = False

equal(x) eq, eq, (a1,b1) (a2, b2) =eq, a1 ax \eqy by by

Explicit recursion, implicit dictionaries

equal(Unit) Unit Unit = True

equal{+) equal{a) equal(b) (Inl ay) (Inl ap) = equal(a) ay ap

equal(+) equal(a) equal(b) (Inr by) (Inr by) = equal(b) by by

equal(+) equal(a) equal(b) _ = False

equal(x) equal{a) equal(b) (al,bl) (a2, b7) = equal(a) aj ay N equal(b) by by

We rename the dictionary arguments.

Explicit recursion, implicit dictionaries

equal(Unit) Unit Unit = True

equal{a + b) equal(a) equal(b) (Inl ay) (Inl ay) = equal{a) ai ap

equal{a +) equal{a) equal(b) (Inr by) (Inr by) = equal(b) by by

equal{a + b) equal{(a) equal(b) _ = False

equal{a x b) equal{a) equal(b) (al,bl) (ap,bp) =equal({a) ay ay A equal(b) by by

—_ =

We add variables to the type arguments.

Explicit recursion, implicit dictionaries

equal(Unit) Unit Unit = True

equal{a+b) ... (Inl ay) (Inl ap) = equal(a) ay ap

equal{a +b) ... (Inr by) (Inr by) = equal(b) by by

equal{a +0b) ... _ _ = False

equal{a X b) ... (a1,b1) (az,b3) = equal(a) aj ay N equal(b) by by

We forget the dictionary arguments.
O Scoped type variables are in red.
O Looks like the original definition, but is interpreted in the same
way as the current implementation.
O Type arguments are type constructors, applied to variables.
Always kind *.

What about the type?

equal{Int) :: Int — Int — Bool
equal([Char]) :: [Char] — [Char] — Bool

For completely specified types of kind *, we still have

equal(t :: x) :: t — t — Bool

What about the type?

equal{Int) :: Int — Int — Bool
equal([Char]) :: [Char] — [Char] — Bool

For completely specified types of kind *, we still have

equal(t :: x) :: t — t — Bool

equal(Tree) :: forbidden!

What about the type?

equal{Int) :: Int — Int — Bool
equal([Char]) :: [Char] — [Char] — Bool

For completely specified types of kind *, we still have

equal(t :: x) :: t — t — Bool

equal(Tree a)::2??

What about the type?

equal{Int) :: Int — Int — Bool
equal([Char]) :: [Char] — [Char] — Bool

For completely specified types of kind *, we still have
equal(t :: x) :: t — t — Bool

equal(Tree a)::2??

Let us look at the type for the product case:

equal{a x b) (a1,b1) (a2, by) = equal(a) a1 ap A equal(b) by by

What about the type?

equal{Int) :: Int — Int — Bool
equal([Char]) :: [Char] — [Char] — Bool

For completely specified types of kind *, we still have
equal(t :: x) :: t — t — Bool

equal(Tree a)::2??

Let us look at the type for the product case:

equal{a x b) (a1,b1) (a2, by) = equal(a) a1 ap A equal(b) by by

equal{a X b) ::Va b.a x b — a x b — Bool

What about the type?

equal{Int) :: Int — Int — Bool
equal([Char]) :: [Char] — [Char] — Bool

For completely specified types of kind *, we still have
equal(t :: x) :: t — t — Bool

equal(Tree a)::2??

Let us look at the type for the product case:

equal{a x b) (a1,b1) (a2, by) = equal(a) a1 ap A equal(b) by by

equal(a x b) ::Va b.(equal{a) ::a — a — Bool, equal(b) ::b — b — Bool)
= axb—axb— Bool

What about the type?

equal{Int) :: Int — Int — Bool
equal([Char]) :: [Char] — [Char] — Bool

For completely specified types of kind *, we still have
equal(t :: x) :: t — t — Bool

equal(Tree a)::2??

Let us look at the type for the product case:

equal{a x b) (a1,b1) (a2, by) = equal(a) a1 ap A equal(b) by by

equal(a x b) ::Va b.(equal{a) ::a — a — Bool, equal(b) ::b — b — Bool)
= axb—axb— Bool

equal(Tree a) :: Va.(equal(a) ::a — a — Bool) = Tree a — Tree a — Bool

What about the type?

equal{Int) :: Int — Int — Bool
equal([Char]) :: [Char] — [Char] — Bool

For completely specified types of kind *, we still have

equal(t :: x) :: t — t — Bool

equal(Tree a)::2??

Let us look at the type for the product case:

equal{a x b) (a1,b1) (a2, by) = equal(a) a1 ap A equal(b) by by

equal(a x b) ::Va b.(equal{a) ::a — a — Bool, equal(b) ::b — b — Bool)
= axb—axb— Bool

equal(Tree a) :: Va.(equal(a) ::a — a — Bool) = Tree a — Tree a — Bool

Dictionary arguments reappear as dependency constraints in the types!

Satisfying constraints

similar :: Char — Char — Bool
similar a b = toLower a = toLower b

Satisfying constraints

similar :: Char — Char — Bool
similar a b = toLower a = toLower b

let equal(a) = similar
in equal(Tree a)
:: Tree Char — Tree Char — Bool

Satisfying constraints

similar :: Char — Char — Bool
similar a b = toLower a = toLower b

let equal(a) = similar
in equal(Tree a)
:: Tree Char — Tree Char — Bool

let equal(a) = similar
in equal(Pair a b)
i Vb.(equal(b) :: b — b — Bool)
= Pair Char b — Pair Char b — Bool

Satisfying constraints

similar :: Char — Char — Bool
similar a b = toLower a = toLower b

let equal(a) = similar
in equal(Tree a)
:: Tree Char — Tree Char — Bool

let equal(a) = similar
in equal(Pair a b)
i Vb.(equal(b) :: b — b — Bool)
= Pair Char b — Pair Char b — Bool

let equal(a) = similar
in equal(Pair a a)
:: Pair Char Char — Pair Char Char — Bool

Satisfying constraints — continued

let equal(a) = similar
in Ax — equal(Tree a) Leaf x
:: Tree Char — Bool

Satisfying constraints — continued

let equal(a) = similar
in Ax — equal(Tree a) Leaf x
:: Tree Char — Bool

let neqt = not o equal (Tree a)
in True
:: Bool

Satisfying constraints — continued

let equal(a) = similar
in Ax — equal(Tree a) Leaf x
:: Tree Char — Bool

let neqt = not o equal (Tree a)

in True
:: Bool
let neqt = not o equal (Tree a)
in (let equal(a) = True
in neqt
,let equal(a) = similar
in neqt
)

:: Va.(Tree a — Tree a — Bool, Tree Char — Tree Char — Bool)

Type signatures

The following type signature is sufficient for generic equality:

equal(t) :: (generalize (1) a
— (equal(a) ::a — a — Bool) = a — a — Bool) t

Type signatures

The following type signature is sufficient for generic equality:

equal(t) :: (generalize (a) a
— (equal(a) ::a — a — Bool) = a — a — Bool) t
O Basic idea: type on kind * plus all dependencies.
O Future work: infer dependency constraints.
O More than one dependency?

Multiple dependencies

important(t) :: (generalize (a) a — (important{(a) ::a — Bool) = a — Bool) t

Multiple dependencies

important(t) :: (generalize (a) a — (important(a) ::a — Bool) = a — Bool) t

optshow(t) :: (generalize (1) a —
(optshow(a) ::a — String, important(a) ::a — Bool)
= a — String) t

Multiple dependencies

important(t) :: (generalize (a) a — (important(a) ::a — Bool) = a — Bool) t

optshow(t) :: (generalize (1) a —
(optshow(a) ::a — String, important(a) ::a — Bool)
= a — String) t

optshow{a + b) (Inla) =
if important(a) a
then optshow(a) a
else "..."

Multiple dependencies

important(t) :: (generalize (a) a — (important(a) ::a — Bool) = a — Bool) t

optshow(t) :: (generalize (1) a —
(optshow(a) ::a — String, important(a) ::a — Bool)
= a — String) t

optshow{a + b) (Inla) =
if important(a) a
then optshow(a) a
else "..."

O This is very hard to do without explicit recursion.

O Generic functions with multiple dependencies occur
frequently in in the context of generic traversals or
type-indexed datatypes.

Future possibilities

O

I o

Do the same transformation on the type level (for type-indexed
data types).

Allow complex type patterns.
Allow type patterns of higher kinds.
Higher-order generic functions.

Already mentioned: infer dependency constraints in type
signatures of generic functions.

Conclusions

O

Explicit recursion is simpler to explain and simpler to use.
Because of the use of dependency constraints, nothing of the
generality of the former approach (using implicit recursion) is
lost.

Explicit recursion and dependency constraints combine
beautifully with other features of Generic Haskell (default
cases, generic abstractions).

Many other problems seem to become easier to solve once the
type patterns contain arguments.

Generic Haskell is available from

http://www.generic-haskell.org

The type system for explicit recursion is only implemented in a
prototype. (Demonstration is possible.)

http://www.generic-haskell.org

