Explicit Recursion in Generic Haskell

Andres Löh
Universiteit Utrecht
andres@cs.uu.nl

26th March 2003

This is joint work with Dave Clarke and Johan Jeuring.

Overview

- → What is Generic Haskell?
- → The difference between implicit and explicit recursion
- → How explicit recursion works
- → Future possibilities

Generic Haskell

- → An extension to Haskell
- → Allows the programmer to define generic functions (and generic datatypes), i.e. functions indexed by a type argument
- → A generic function can be defined inductively over the structure of datatypes, thus working for all types in a generic way
- → Generic Haskell is implemented as a preprocessor that translates generic functions into Haskell
- → Translation proceeds by specialisation
- → Most of the ideas go back to Ralf Hinze's several papers about generic programming in Haskell

Example: Generic equality

```
\begin{array}{lll} \textit{equal} \langle \textit{Unit} \rangle \; \textit{Unit} \; &= \textit{True} \\ \textit{equal} \langle a + b \rangle \; (\textit{Inl} \; a_1) \; (\textit{Inl} \; a_2) \; &= \textit{equal} \langle a \rangle \; a_1 \; a_2 \\ \textit{equal} \langle a + b \rangle \; (\textit{Inr} \; b_1) \; (\textit{Inr} \; b_2) \; &= \textit{equal} \langle b \rangle \; b_1 \; b_2 \\ \textit{equal} \langle a + b \rangle \; &= \; &= \; \textit{False} \\ \textit{equal} \langle a \times b \rangle \; (a_1, b_1) \; (a_2, b_2) \; &= \; \textit{equal} \langle a \rangle \; a_1 \; a_2 \; \wedge \; \textit{equal} \langle b \rangle \; b_1 \; b_2 \end{array}
```

- → The type arguments are ⟨specially marked⟩.
- → Cases are given for a small set of Haskell datatypes:

```
data Unit = Unit
data a + b = Inl \ a \mid Inr \ b
data a \times b = (a, b)
```

(Additional constructs deal with constructor names.)

Generic functions

- → Generic functions can be specialised to several types.
- → Special cases for specific datatypes/constructors are possible.
- → Generic functions can "inherit" cases from other generic functions.
- Other examples of generic functions include: mapping, ordering, (de)coding, (un)parsing, generic traversals, operations on type-indexed datatypes.

Implicit versus explicit recursion

Actually, the equality function used to be written differently in Generic Haskell:

```
\begin{array}{lll} \textit{equal} \langle \textit{Unit} \rangle \; \textit{Unit} \; \textit{Unit} & = \textit{True} \\ \textit{equal} \langle + \rangle \; \textit{eq}_a \; \textit{eq}_b \; (\textit{Inl} \; a_1) \; (\textit{Inl} \; a_2) \; = \textit{eq}_a \; a_1 \; a_2 \\ \textit{equal} \langle + \rangle \; \textit{eq}_a \; \textit{eq}_b \; (\textit{Inr} \; b_1) \; (\textit{Inr} \; b_2) \; = \textit{eq}_b \; b_1 \; b_2 \\ \textit{equal} \langle + \rangle \; \textit{eq}_a \; \textit{eq}_b \; - & = \textit{False} \\ \textit{equal} \langle \times \rangle \; \textit{eq}_a \; \textit{eq}_b \; (a_1, b_1) \; (a_2, b_2) \; = \textit{eq}_a \; a_1 \; a_2 \wedge \textit{eq}_b \; b_1 \; b_2 \end{array}
```

- → Less intuitive, but more general.
- → Type arguments are always simple type constructors.
- → Kind-indexed type:

```
\begin{array}{c} equal \langle t :: * \rangle :: t \to t \to Bool \\ equal \langle t :: * \to * \to * \rangle :: \forall a \ b. (a \to a \to Bool) \to (b \to b \to Bool) \\ \to t \ a \ b \to t \ a \ b \to Bool \end{array}
```

→ Type-level application is replaced by value-level application.

```
equal\langle f a \rangle = equal\langle f \rangle \ (equal\langle a \rangle)
```

Key idea

Get the nice syntax of explicit recursion, but keep all advantages of implicit recursion.

```
\begin{array}{lll} equal \langle Unit \rangle \ Unit \ Unit \\ equal \langle + \rangle \ eq_a \ eq_b \ (Inl \ a_1) \ (Inl \ a_2) \\ equal \langle + \rangle \ eq_a \ eq_b \ (Inr \ b_1) \ (Inr \ b_2) \\ equal \langle + \rangle \ eq_a \ eq_b \ - \\ equal \langle \times \rangle \ eq_a \ eq_b \ (a_1,b_1) \ (a_2,b_2) \end{array}
= \begin{array}{ll} True \\ = eq_a \ a_1 \ a_2 \\ = eq_b \ b_1 \ b_2 \\ = False \\ = eq_a \ a_1 \ a_2 \ \wedge \ eq_b \ b_1 \ b_2 \end{array}
```

```
\begin{array}{lll} equal \langle Unit \rangle & Unit & Unit \\ equal \langle + \rangle & equal \langle {\color{red} a} \rangle & equal \langle {\color{red} b} \rangle & (Inl \ a_1) & (Inl \ a_2) \\ equal \langle + \rangle & equal \langle {\color{red} a} \rangle & equal \langle {\color{red} b} \rangle & (Inr \ b_1) & (Inr \ b_2) \\ equal \langle + \rangle & equal \langle {\color{red} a} \rangle & equal \langle {\color{red} b} \rangle & - \\ equal \langle \times \rangle & equal \langle {\color{red} a} \rangle & equal \langle {\color{red} b} \rangle & (a_1, b_1) & (a_2, b_2) \\ \end{array} \\ = \begin{array}{ll} & = True \\ = equal \langle {\color{red} a} \rangle \ a_1 \ a_2 \\ = equal \langle {\color{red} b} \rangle \ b_1 \ b_2 \\ = equal \langle {\color{red} a} \rangle \ a_1 \ a_2 \wedge equal \langle {\color{red} b} \rangle \ b_1 \ b_2 \\ = equal \langle {\color{red} a} \rangle \ a_1 \ a_2 \wedge equal \langle {\color{red} b} \rangle \ b_1 \ b_2 \\ = equal \langle {\color{red} a} \rangle \ a_1 \ a_2 \wedge equal \langle {\color{red} b} \rangle \ b_1 \ b_2 \\ \end{array}
```

We rename the dictionary arguments.

```
\begin{array}{lll} equal\langle Unit\rangle & Unit & = True \\ equal\langle a+b\rangle & equal\langle a\rangle & equal\langle b\rangle & (Inl\ a_1) & (Inl\ a_2) & = equal\langle a\rangle & a_1\ a_2 \\ equal\langle a+b\rangle & equal\langle a\rangle & equal\langle b\rangle & (Inr\ b_1) & (Inr\ b_2) & = equal\langle b\rangle & b_1\ b_2 \\ equal\langle a+b\rangle & equal\langle a\rangle & equal\langle b\rangle & _ = & = False \\ equal\langle a\timesb\rangle & equal\langle a\rangle & equal\langle b\rangle & (a_1,b_1) & (a_2,b_2) & = equal\langle a\rangle & a_1\ a_2 \wedge equal\langle b\rangle & b_1\ b_2 \end{array}
```

We add variables to the type arguments.

```
\begin{array}{lll} \textit{equal} \langle \textit{Unit} \rangle \; \textit{Unit} \; \textit{Unit} \; & = \textit{True} \\ \textit{equal} \langle \textit{a} + \textit{b} \rangle \; \dots \; (\textit{Inl} \; a_1) \; (\textit{Inl} \; a_2) & = \textit{equal} \langle \textit{a} \rangle \; a_1 \; a_2 \\ \textit{equal} \langle \textit{a} + \textit{b} \rangle \; \dots \; (\textit{Inr} \; b_1) \; (\textit{Inr} \; b_2) & = \textit{equal} \langle \textit{b} \rangle \; b_1 \; b_2 \\ \textit{equal} \langle \textit{a} + \textit{b} \rangle \; \dots \; \_ & = \textit{False} \\ \textit{equal} \langle \textit{a} \times \textit{b} \rangle \; \dots \; (a_1, b_1) \; (a_2, b_2) & = \textit{equal} \langle \textit{a} \rangle \; a_1 \; a_2 \; \wedge \; \textit{equal} \langle \textit{b} \rangle \; b_1 \; b_2 \\ & = \textit{equal} \langle \textit{a} \times \textit{b} \rangle \; \dots \; (a_1, b_1) \; (a_2, b_2) & = \textit{equal} \langle \textit{a} \rangle \; a_1 \; a_2 \; \wedge \; \textit{equal} \langle \textit{b} \rangle \; b_1 \; b_2 \\ & = \textit{equal} \langle \textit{a} \times \textit{b} \rangle \; \dots \; (a_1, b_1) \; (a_2, b_2) & = \textit{equal} \langle \textit{a} \times \textit{b} \rangle \; a_1 \; a_2 \; \wedge \; \textit{equal} \langle \textit{b} \times \textit{b} \rangle \; b_2 \\ & = \textit{equal} \langle \textit{a} \times \textit{b} \times \textit{b} \rangle \; a_1 \; a_2 \; \wedge \; \textit{equal} \langle \textit{b} \times \textit{b} \times \textit{b} \rangle \; a_1 \; a_2 \; \wedge \; \textit{equal} \langle \textit{b} \times \textit{b} \times \textit{b} \rangle \; a_2 \; a_2 \; \wedge \; \textit{equal} \langle \textit{b} \times \textit{b} \times \textit{b} \rangle \; a_1 \; a_2 \; \wedge \; \textit{equal} \langle \textit{b} \times \textit{b} \times \textit{b} \times \textit{b} \rangle \; a_2 \; a_3 \; a_4 \; a_4 \; a_5 \;
```

We forget the dictionary arguments.

- → Scoped type variables are in red.
- → Looks like the original definition, but is interpreted in the same way as the current implementation.
- → Type arguments are type constructors, applied to variables. Always kind *.

```
equal\langle Int \rangle :: Int \rightarrow Int \rightarrow Bool

equal\langle [Char] \rangle :: [Char] \rightarrow [Char] \rightarrow Bool
```

For completely specified types of kind *, we still have

```
equal\langle t :: * \rangle :: t \rightarrow t \rightarrow Bool
```

```
equal\langle Int \rangle :: Int \rightarrow Int \rightarrow Bool

equal\langle [Char] \rangle :: [Char] \rightarrow [Char] \rightarrow Bool
```

For completely specified types of kind *, we still have

```
equal\langle t :: * \rangle :: t \rightarrow t \rightarrow Bool
```

```
equal\langle Tree \rangle :: forbidden!
```

```
equal\langle Int \rangle :: Int \rightarrow Int \rightarrow Bool

equal\langle [Char] \rangle :: [Char] \rightarrow [Char] \rightarrow Bool
```

For completely specified types of kind *, we still have

```
equal\langle t :: * \rangle :: t \rightarrow t \rightarrow Bool
```

```
equal\langle Tree \ a \rangle ::???
```

```
equal\langle Int \rangle :: Int \rightarrow Int \rightarrow Bool

equal\langle [Char] \rangle :: [Char] \rightarrow [Char] \rightarrow Bool
```

For completely specified types of kind *, we still have

```
equal\langle t :: * \rangle :: t \rightarrow t \rightarrow Bool
```

```
equal\langle Tree \ a \rangle::???
```

```
equal\langle \mathbf{a} \times \mathbf{b} \rangle \ (a_1, b_1) \ (a_2, b_2) = equal\langle \mathbf{a} \rangle \ a_1 \ a_2 \wedge equal\langle \mathbf{b} \rangle \ b_1 \ b_2
```

```
\begin{array}{ll} \textit{equal} \langle \textit{Int} \rangle & :: \textit{Int} \rightarrow \textit{Int} \rightarrow \textit{Bool} \\ \textit{equal} \langle [\textit{Char}] \rangle :: [\textit{Char}] \rightarrow [\textit{Char}] \rightarrow \textit{Bool} \end{array}
```

For completely specified types of kind *, we still have

$$equal\langle t :: * \rangle :: t \rightarrow t \rightarrow Bool$$

 $equal\langle Tree \ a \rangle ::???$

$$equal\langle a \times b \rangle \ (a_1, b_1) \ (a_2, b_2) = equal\langle a \rangle \ a_1 \ a_2 \wedge equal\langle b \rangle \ b_1 \ b_2$$

$$equal\langle a \times b \rangle :: \forall a \ b.a \times b \rightarrow a \times b \rightarrow Bool$$

```
equal\langle Int \rangle :: Int \rightarrow Int \rightarrow Bool

equal\langle [Char] \rangle :: [Char] \rightarrow [Char] \rightarrow Bool
```

For completely specified types of kind *, we still have

$$equal\langle t :: * \rangle :: t \rightarrow t \rightarrow Bool$$

```
equal\langle Tree \ a \rangle ::???
```

$$equal\langle a \times b \rangle \ (a_1, b_1) \ (a_2, b_2) = equal\langle a \rangle \ a_1 \ a_2 \wedge equal\langle b \rangle \ b_1 \ b_2$$

$$\begin{array}{c} equal \langle {\color{red} a} \times {\color{blue} b} \rangle :: \forall a \ b. (equal \langle {\color{blue} a} \rangle :: a \rightarrow a \rightarrow Bool, equal \langle {\color{blue} b} \rangle :: b \rightarrow b \rightarrow Bool) \\ \qquad \qquad \Rightarrow a \times b \rightarrow a \times b \rightarrow Bool \end{array}$$

```
equal\langle Int \rangle :: Int \rightarrow Int \rightarrow Bool

equal\langle [Char] \rangle :: [Char] \rightarrow [Char] \rightarrow Bool
```

For completely specified types of kind *, we still have

$$equal\langle t :: * \rangle :: t \rightarrow t \rightarrow Bool$$

equal $\langle Tree \ a \rangle ::???$

$$equal\langle \mathbf{a} \times \mathbf{b} \rangle \ (a_1, b_1) \ (a_2, b_2) = equal\langle \mathbf{a} \rangle \ a_1 \ a_2 \wedge equal\langle \mathbf{b} \rangle \ b_1 \ b_2$$

$$\begin{array}{c} equal \langle {\color{red} a} \times {\color{blue} b} \rangle :: \forall a \ b. (equal \langle {\color{blue} a} \rangle :: a \rightarrow a \rightarrow Bool, equal \langle {\color{blue} b} \rangle :: b \rightarrow b \rightarrow Bool) \\ \qquad \qquad \Rightarrow a \times b \rightarrow a \times b \rightarrow Bool \end{array}$$

$$equal\langle \mathit{Tree}\ a \rangle :: \forall a. (equal\langle a \rangle :: a \to a \to Bool) \Rightarrow \mathit{Tree}\ a \to \mathit{Tree}\ a \to Bool$$

```
equal\langle Int \rangle :: Int \rightarrow Int \rightarrow Bool

equal\langle [Char] \rangle :: [Char] \rightarrow [Char] \rightarrow Bool
```

For completely specified types of kind *, we still have

$$equal\langle t :: * \rangle :: t \rightarrow t \rightarrow Bool$$

equal $\langle Tree \ a \rangle ::???$

Let us look at the type for the product case:

$$equal\langle a \times b \rangle \ (a_1, b_1) \ (a_2, b_2) = equal\langle a \rangle \ a_1 \ a_2 \wedge equal\langle b \rangle \ b_1 \ b_2$$

$$\begin{array}{c} equal \langle {\color{red} a} \times {\color{blue} b} \rangle :: \forall a \ b. (equal \langle {\color{blue} a} \rangle :: a \longrightarrow a \longrightarrow Bool, equal \langle {\color{blue} b} \rangle :: b \longrightarrow b \longrightarrow Bool) \\ \qquad \qquad \Rightarrow a \times b \longrightarrow a \times b \longrightarrow Bool \end{array}$$

$$equal\langle Tree \ a \rangle :: \forall a. (equal\langle a \rangle :: a \rightarrow a \rightarrow Bool) \Rightarrow Tree \ a \rightarrow Tree \ a \rightarrow Bool$$

Dictionary arguments reappear as dependency constraints in the types!

```
similar :: Char \rightarrow Char \rightarrow Bool
similar a b = toLower a \equiv toLower b
```

```
similar :: Char \rightarrow Char \rightarrow Bool
similar a b = toLower a \equiv toLower b
```

```
let equal\langle a \rangle = similar

in equal\langle Tree \ a \rangle

:: Tree\ Char \rightarrow Tree\ Char \rightarrow Bool
```

similar :: $Char \rightarrow Char \rightarrow Bool$ similar $a \ b = tolower \ a = tolower \ b$

```
let equal⟨a⟩ = similar
in equal⟨Tree a⟩
:: Tree Char → Tree Char → Bool
```

```
let equal\langle a \rangle = similar

in equal\langle Pair \ a \ b \rangle

:: \forall b. (equal\langle b \rangle :: b \rightarrow b \rightarrow Bool)

\Rightarrow Pair Char \ b \rightarrow Pair Char \ b \rightarrow Bool
```

 $similar :: Char \rightarrow Char \rightarrow Bool$

```
similar a \ b = toLower \ a \equiv toLower \ b

let equal\langle a \rangle = similar
in equal\langle Tree \ a \rangle
:: Tree \ Char \rightarrow Tree \ Char \rightarrow Bool
```

```
let equal\langle a \rangle = similar

in equal\langle Pair \ a \ b \rangle

:: \forall b. (equal\langle b \rangle :: b \rightarrow b \rightarrow Bool)

\Rightarrow Pair \ Char \ b \rightarrow Pair \ Char \ b \rightarrow Bool
```

```
let equal\langle a \rangle = similar
in equal\langle Pair \ a \ a \rangle
:: Pair Char Char \rightarrow Pair Char Char \rightarrow Bool
```

Satisfying constraints – continued

```
let equal\langle a \rangle = similar
in \lambda x \rightarrow equal\langle Tree \ a \rangle Leaf x
:: Tree Char \rightarrow Bool
```

Satisfying constraints – continued

```
let equal\langle a \rangle = similar

in \lambda x \rightarrow equal\langle Tree \ a \rangle \ Leaf \ x

:: Tree \ Char \rightarrow Bool
```

```
let neqt = not \circ equal \langle Tree \ a \rangle

in True

:: Bool
```

Satisfying constraints – continued

```
let equal\langle a \rangle = similar
in \lambda x \rightarrow equal \langle Tree \, a \rangle Leaf x
                     :: Tree\ Char \rightarrow Bool
let neqt = not \circ equal \langle Tree \, a \rangle
in True
              :: Bool
let negt = not \circ equal \langle Tree \, a \rangle
in (let equal\langle a \rangle = True
      in negt
    , let equal\langle a \rangle = similar
      in negt
                           :: \forall a. (Tree \ a \rightarrow Tree \ a \rightarrow Bool, Tree \ Char \rightarrow Tree \ Char \rightarrow Bool)
```

Type signatures

The following type signature is sufficient for generic equality:

```
equal\langle t \rangle :: (\mathbf{generalize} \langle a \rangle \ a \\ \mapsto (equal\langle a \rangle :: a \to a \to Bool) \Rightarrow a \to a \to Bool) \ t
```

Type signatures

The following type signature is sufficient for generic equality:

```
\begin{array}{c} equal \langle t \rangle :: (\mathbf{generalize} \ \langle a \rangle \ a \\ \qquad \mapsto (equal \langle a \rangle :: a \rightarrow a \rightarrow Bool) \Rightarrow a \rightarrow a \rightarrow Bool) \ t \end{array}
```

- → Basic idea: type on kind * plus all dependencies.
- → Future work: infer dependency constraints.
- → More than one dependency?

```
important\langle t \rangle :: (\mathbf{generalize} \ \langle \mathbf{a} \rangle \ a \mapsto (important\langle \mathbf{a} \rangle :: a \rightarrow Bool) \Rightarrow a \rightarrow Bool) \ t
```

```
important \langle t \rangle :: (\mathbf{generalize} \langle a \rangle \ a \mapsto (important \langle a \rangle :: a \rightarrow Bool) \Rightarrow a \rightarrow Bool) \ t
```

```
optshow\langle t \rangle :: (\mathbf{generalize} \ \langle \mathbf{a} \rangle \ a \mapsto (optshow\langle \mathbf{a} \rangle :: a \to String, important\langle \mathbf{a} \rangle :: a \to Bool) \\ \Rightarrow a \to String) \ t
```

```
optshow\langle t \rangle :: (\mathbf{generalize} \langle a \rangle \ a \mapsto (optshow\langle a \rangle :: a \rightarrow String, important\langle a \rangle :: a \rightarrow Bool) \\ \Rightarrow a \rightarrow String) \ t
```

 $important\langle t \rangle :: (generalize \langle a \rangle \ a \mapsto (important\langle a \rangle :: a \rightarrow Bool) \Rightarrow a \rightarrow Bool) \ t$

```
optshow\langle a+b\rangle (Inl a) = if important \langle a\rangle a then optshow\langle a\rangle a else "..."
```

```
important\langle t \rangle :: (generalize \langle a \rangle \ a \mapsto (important\langle a \rangle :: a \rightarrow Bool) \Rightarrow a \rightarrow Bool) \ t
optshow\langle t \rangle :: (generalize \langle a \rangle \ a \mapsto (optshow\langle a \rangle :: a \rightarrow String, important\langle a \rangle :: a \rightarrow Bool)
\Rightarrow a \rightarrow String) \ t
```

```
optshow\langle a + b \rangle \ (Inl \ a) =
if \ important\langle a \rangle \ a
then \ optshow\langle a \rangle \ a
else "..."
```

- → This is very hard to do without explicit recursion.
- → Generic functions with multiple dependencies occur frequently in in the context of generic traversals or type-indexed datatypes.

Future possibilities

- → Do the same transformation on the type level (for type-indexed data types).
- → Allow complex type patterns.
- → Allow type patterns of higher kinds.
- → Higher-order generic functions.
- → Already mentioned: infer dependency constraints in type signatures of generic functions.

Conclusions

- → Explicit recursion is simpler to explain and simpler to use.
- → Because of the use of dependency constraints, nothing of the generality of the former approach (using implicit recursion) is lost.
- → Explicit recursion and dependency constraints combine beautifully with other features of Generic Haskell (default cases, generic abstractions).
- → Many other problems seem to become easier to solve once the type patterns contain arguments.
- → Generic Haskell is available from

http://www.generic-haskell.org

→ The type system for explicit recursion is only implemented in a prototype. (Demonstration is possible.)